
1

Deep Auto-encoder-based Anomaly Detection of
Electricity Theft Cyber-attacks in Smart Grids

Abdulrahman Takiddin, Muhammad Ismail, Senior Member, IEEE, Usman Zafar, Erchin Serpedin, Fellow, IEEE

Abstract—Designing an electricity theft cyber-attack detector
for the advanced metering infrastructures (AMIs) is challenging
due to the limited availability of electricity theft datasets (i.e.,
malicious datasets). Anomaly detectors, which are trained solely
on honest customers’ energy consumption profiles (i.e., benign
datasets), could potentially overcome this challenge. Unfortu-
nately, existing anomaly detectors in AMIs present shallow archi-
tectures and are incapable of capturing the temporal correlations
as well as the sophisticated patterns present in the electricity
consumption data, which impact their detection performance
negatively. This paper proposes the adoption of deep (stacked)
auto-encoders with a long-short-term-memory (LSTM)-based
sequence to sequence (seq2seq) structure. The depth of the auto-
encoders’ structure helps capture the sophisticated patterns of
the data and the seq2seq LSTM model enables exploitation of
the time-series nature of data. We investigate the performance of
simple auto-encoder (SAE), variational auto-encoder (VAE), and
auto-encoder with attention (AEA), in which improved detection
performance is observed when seq2seq structures are adopted
compared to fully connected ones. Based on the simulation
results, the AEA detector offers an enhancement of 4 − 21%
and 4 − 13% in terms of detection rate and false alarm rate,
respectively, compared to existing state-of-the-art detectors.

Index Terms—electricity stealth, auto-encoders, seq2seq, deep
machine learning, hyper-parameter optimization.

I. INTRODUCTION

Electricity stealth represents a primary concern in power
grids as it results in high financial losses. In the United
States, such losses are approximated to be $6 billion [3]
yearly. Besides overloading the power grid, electricity stealths
negatively impact the grid’s performance in terms of stability
and efficiency. To monitor the energy consumption and detect
electricity thefts, utility companies have deployed advanced
metering infrastructures (AMIs) where smart meters regularly
record customers’ electricity consumption in residential units.
However, smart meters may be subject to different types of cy-
ber stealths. The smart meters’ authentication firmware allows
malicious users to compromise the electricity consumption
reports’ integrity by lowering their electricity bills [4], [5].

A. Takiddin is with the ECEN Dept., Texas A&M University, College
Station, TX, USA (email: abdulrahman.takiddin@tamu.edu).

M. Ismail is with the Department of Computer Science, Tennessee Tech
University, Cookeville, TN, USA (email: mismail@tntech.edu).

U. Zafar is with Qatar Environment and Energy Research Institute, Hamad
Bin Khalifa University, Doha, Qatar (email: uzafar@hbku.edu.qa).

E. Serpedin is with the ECEN Dept., Texas A&M University, College
Station, TX, USA (e-mail: eserpedin@tamu.edu).

This publication was made possible by NPRP10-1223-160045 from the
Qatar National Research Fund (a member of Qatar Foundation). The state-
ments made herein are solely the responsibility of the authors. Part of this
work was presented in the 2020 28th European Signal Processing Conference
(EUSIPCO) [1] and the 2021 International Symposium on Signals, Circuits
and Systems (ISSCS) [2].

A. Related Work and Limitations

Since smart meters provide lots of energy consumption data,
machine learning models are proposed to identify electricity
thefts [6], [7]. Machine learning-based detectors include both
supervised classifiers and anomaly detectors.

Supervised classifiers employ both the benign and mali-
cious energy consumption profiles of customers for training.
Such classifiers include shallow machine learning-based clas-
sifiers such as Naı̈ve Bayes [8] and multi-class support vector
machines (SVMs) [3] that offer detection rates (DRs) of 80%
and 94%, respectively. AdaBoost [9] and random forests [10]
provide an accuracy of 80% and F1-score of 81%, respectively.
Additionally, a two-step detector based on decision trees
and SVM reports a 92% accuracy score [11], whereas an
extreme gradient boosting classifier offers a precision score of
97% [12]. Deep machine learning-based classifiers including
feed forward neural networks [13], recurrent neural networks
(RNNs) [14], and vector embeddings [15] report 92% - 95% in
DR. Hybrid detectors based on convolutional neural networks
(CNNs) and RNN variations exhibit an accuracy score of 89%
[16] [17]. Notice that the evaluation metrics mentioned above
vary based on different authors’ reports. The limitation of
such supervised classifiers is that they rely on the availability
of both benign and malicious samples for customers’ energy
consumption data. However, this condition is not a practical
assumption in cases where the attack occurs for the first time
(i.e., zero-day attacks). Hence, a supervised classifier is not a
practical option in this case since the detection is exclusive for
the attacks that the detector is trained on (seen attacks) only.

Anomaly detectors [18] utilize benign data to learn the
honest customer consumption patterns during training. During
testing, malicious usage is detected based on the deviation
from the learned honest pattern. Unlike supervised classi-
fiers, where both benign and malicious data are needed,
anomaly detectors can detect zero-day attacks using only
benign data. For example, using only benign data, shallow
machine learning-based approaches such as single-class SVM
[3], auto-regressive integrated moving average (ARIMA) [19],
principal component analysis [20], and outlier detection [21]
report a DR of 76% - 87%. Although such anomaly detectors
are capable of detecting zero-day attacks, it is evident from
the reported detection performance that they partially fail to
capture the sophisticated consumed energy readings’ patterns.
This is because they present static (excluding ARIMA) and
shallow structures. Therefore, there is a need to develop
practical anomaly detectors that are trained only on benign
load profiles and yet exhibit improved detection performance.

2

B. Contributions

Our motivation behind adopting auto-encoders as electricity
theft detectors is to overcome the limitations of the aforemen-
tioned approaches and to improve the electricity theft detection
performance. Auto-encoders present a feasible approach due to
the following advantages. First, auto-encoders are applicable in
various scenarios as they are unsupervised anomaly detectors
that are only trained on benign customers’ data. Hence, they
are able to detect different malicious activities based on the
deviation from the learned benign patterns without the need of
accessing labeled malicious datasets. Such a feature not only
overcomes the limited availability issue of malicious energy
consumption data, but also helps in detecting unseen attacks
since the detection is not exclusively limited to the attacks
that the detectors are trained on, like the case with supervised
learning. Such a generality plays an important role in practice
since not all attacks can be modeled beforehand. Thus, having
a detector that works even in the presence of unseen attacks
brings a second major benefit. Third, The deep structure of the
proposed auto-encoders helps extract more relevant and repre-
sentative features from the energy consumption data. Fourth,
the proposed auto-encoders are equipped with a sequence-to-
sequence (seq2seq) dynamic structure to better comprehend
and model the time-series nature of the data. Fifth, it turns
out that such advantages contribute towards improving the
detection performance. Next, we summarize our contributions.

• We examine both fully connected feed forward and
seq2seq structures based on RNN, long-short-term-
memory (LSTM) architectures for the auto-encoders.
Auto-encoders that are based on fully connected feed
forward structures serve as a benchmark due to their
simple architecture and low computational complexity.
On the other hand, LSTM-based RNN auto-encoders
exploit deeper the nature of the time-series electricity
consumption data and take into consideration the tem-
poral correlations present in the data.

• We investigate the performance of simple auto-encoder
(SAE), variational auto-encoder (VAE), and auto-encoder
with attention (AEA) structures. The SAE serves as
a benchmark for the achieved performance and offers
the lowest complexity. Adopting VAE rather than SAE
helps in capturing the variabilities within the latent
space through a variance parameter, and hence, improves
detection performance. Implementing AEA rather than
VAE further improves the detection performance as it
better handles long sequences and speeds up the learning
process using the appropriate attention layer [22]. We
validate this by assessing the models’ performance using
two datasets separately.

• The applicability of the proposed auto-encoders is veri-
fied using six different unseen electricity cyber-attacks.
Then, we compare the proposed auto-encoders’ per-
formance to a wide variety of shallow/deep, super-
vised/unsupervised, and static/dynamic detectors includ-
ing shallow supervised classifiers (Naı̈ve Bayes and
multi-class SVM), deep supervised classifiers (feed for-
ward and LSTM), and shallow anomaly detectors (single-

class SVM and ARIMA). The optimization of hyper-
parameters is carried out to maximize the detection
performance of the proposed auto-encoders as well as the
benchmark supervised classifiers and anomaly detectors.
The deep AEA anomaly detector yields the best perfor-
mance with 94% in DR and 5% in false alarm (FA) rate,
which enhances the DR by 4 − 8% and reduces the FA
rate by 4−7%. Further, this performance is achieved with
low complexity in the offline training stage while offering
almost an instant decision in the online implementation.

The remainder of the paper is organized as follows. Section
II describes the energy consumption profiles (benign and
malicious) and the data preparation. Section III discusses the
architecture of the proposed auto-encoders and the conducted
optimization. Section IV presents the results of the conducted
experiments. Finally, conclusions are drawn in Section V.

II. DATA PREPARATION

In this section, we present the energy consumption data
utilized to train and test the investigated detectors. The devel-
oped anomaly detectors are trained on benign datasets only
and tested on the benign and malicious datasets, whereas
the developed supervised classifiers are trained and tested on
benign and malicious datasets. To verify the applicability and
feasibility of auto-encoders, we use two different datasets to
capture a wide variety of realistic customers’ electricity usage
patterns of various appliances during weekdays, weekends, and
during all seasons of the year, including vacations. The first
dataset is acquired from the State Grid Corporation of China
(SGCC) [23]; it has labeled benign and malicious daily energy
consumption readings of real customers. The second dataset
has real benign hourly energy consumption samples from the
Irish Smart Energy Trial (ISET) [24] and artificially generated
malicious samples generated using six attack functions.

A. State Grid Corporation of China Dataset

The SGCC dataset contains around 40,000 customers’ daily
electricity consumption data (both benign and malicious sam-
ples) distributed over three years. Sample daily energy con-
sumption data for three benign and three malicious customers
is illustrated in Figure 1 throughout ten days. Let Ec(d, t)
represent the value of the electricity consumption for customer
c at a given day d. All these values designate entries of
matrix Ec. When the customer is honest, the recorded energy
consumption by the customer’s smart meter Rc(d) satisfies
the condition Rc(d) = Ec(d). Thus, matrices Ec and Rc

are equal. On the other hand, in the SGCC dataset, malicious
customers trigger a simple attack where they report an energy
consumption value of zero at specified hours to replace the
real consumption value. Hence, the total energy consumption
throughout the day is reduced as illustrated in Figure 1.

B. Irish Smart Energy Trial Dataset

1) Benign Dataset: The ISET dataset contains readings
from smart meters that are installed at around 3,000 residential
units that report electricity consumption every 30 minutes for

3

0
1
2
3
4
5
6

1 2 3 4 5 6 7 8 9 10

C
on

su
m

pt
io

n
(K

W
h)

Days
Benign customer 1 Benign customer 2 Benign customer 3
Malicious customer 1 Malicious customer 2 Malicious customer 3

Fig. 1. SGCC energy consumption sample.1.34 1.46 1.02 1.08 0.868 0.76 0.814 0.85 1.77 0.557 0.509 0.581 0.401 0.79 0.898 1.46 1.29 3.33 3.81 1.86 1.14 1.31

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
on

su
m

pt
io

n
(K

W
)

Time (hour)

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

C
on

su
m

pt
io

n
(K

W
)

Time (hour)

Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 Attack 6

(a) Sample energy consumption of a benign customer.

(b) Sample energy consumption of a malicious customer.

Fig. 2. ISET energy consumption sample.

a period of a year and a half. This yields around 25,000 reports
per customer, which are sufficient for training and testing
the developed electricity stealth anomaly detectors. A sample
energy consumption throughout a day of a benign customer
from the ISET dataset is visualized in Figure 2a.

2) Malicious Dataset: In the ISET dataset, malicious cus-
tomers trigger multiple attack types to exploit the integrity of
the consumption reading so that they can have lower electricity
bills when Rc(d, t) ̸= Ec(d, t). To construct the malicious
dataset, we adopt the approach of false data injection of [3].
In this study, we assume that all customers are equipped
with smart meters where malicious customers tend to locally
perform malicious activities on their own smart meters that are
installed at their own premises to manipulate their own read-
ings to reduce their electricity bills. No action is performed
by malicious customers to affect the smart meter readings of
other customers within the grid. We consider various types of
cyber-attacks that are split into three main categories.

Within the partial reduction attacks, cyber-attack function
f1(Ec(d, t)) reduces the real value of electricity consumption
by a fixed random fraction, α = rand(0.1, 0.8) capturing low
and high level attacks, for all samples, and hence, the value
of the reported electricity consumption Rc(d, t) is

f1(Ec(d, t)) = αEc(d, t). (1)

Cyber-attack function f2(Ec(d, t)) multiplies each reading by
a dynamic random fraction, β = rand(0.1, 0.8) where

f2(Ec(d, t)) = β(d, t)Ec(d, t). (2)

In selective by-pass attacks, zero energy consumption is
reported during an interval of time [ti(d), tf (d)], and outside
that interval, the true energy consumption is reported. Hence,

f3(Ec(d, t)) =

{
0 ∀t ∈ [ti(d), tf (d)]
Ec(d, t) ∀t /∈ [ti(d), tf (d)],

(3)

where the interval has an initial time ti(d) = rand(0, 23−4),
length tl(d) = rand(4, 24), and final time tf (d) = ti(d) −
tl(d). This range captures low-level attacks with minimum off-
time of 4 hours and high level attacks with maximum off-time
of 24 hours.

Price-based load control attacks occur if there are different
prices for electricity during the day. An attack function reports
a consumption value that is constant across the day such that

f4(Ec(d, t)) = E[Ec(d)], (4)

in which E[·] depicts the expected average consumption value.
Since recording consumption values that are constant during
the day is easily detectable, β = rand(0.1, 0.8) is applied as

f5(Ec(d, t)) = β(d, t)E[Ec(d)]. (5)

The last attack function records the values of energy consump-
tion that are high during the time intervals where the electricity
tariff is low and vice versa. Hence,

f6(Ec(d, t)) = Ec(d, T − t+ 1). (6)

For all customers, we apply all the aforementioned cyber-
attack functions to the matrix of the customer’s consumption
profile Ec. Each customer ends up with six malicious matrices.
Figure 2b illustrates sample malicious energy consumption
patterns generated using the six cyber-attack functions from
the benign energy consumption pattern in Figure 2a.

C. Datasets Preparation

The detectors adopted herein are generalized, which means
that all customers’ data are merged together to train and test
the detectors [14]. Then, the smart meter data is split (over
customers) into train and test sets. Customers in the train set
are not included in the test set so that all benign and malicious
customers in the test set present completely unseen data by the
trained network. Below, we discuss splitting the data into train
and test sets for the investigated detectors for both datasets.

For the anomaly detectors, the concatenation of the energy
consumption profile for all customers represents the benign
class dataset, where a single row gives an energy consumption
profile sample along the day. The concatenation of the mali-
cious matrices for all customers represents the malicious class
dataset. Then, we normalize both classes so that all feature
values are brought to a common scale that presents zero mean
and unit variance. Let B and M denote the normalized benign
and malicious data, respectively. First, with a ratio of 2:1, we
split B over the rows (customers) into two disjoint subsets,
B1 and B2. XTR denotes the training data, which is the first
subset B1. Then, to build the test data, M is concatenated
with the second subset B2. For this concatenation, each
sample is associated with either a zero-label for a benign
sample or a one-label for a malicious sample. Accumulating

4

more malicious data than benign data might lead to deceptive
results in terms of performance. To avoid this, the adaptive
synthetic (ADASYN) sampling method [25] is employed so
that the benign and malicious samples are balanced through
oversampling the minor class (malicious readings in the SGCC
dataset and benign readings in the ISET dataset) in the testing
set. Hence, we obtain the test data XTST with the label Y TST.

For the supervised learning detectors, we concatenate the
benign and malicious classes for all customers and apply the
ADASYN to balance them. Then, we split the concatenated
dataset into disjoint train and test sets with a 2 : 1 ratio. We
perform the same normalized feature scaling for the train and
test sets to form the final disjoint sets XTR with the label Y TR

and XTST with the label Y TST, respectively.

III. ELECTRICITY STEALTH DETECTOR DESIGN

Herein, we present the design of the data-driven anomaly
detectors that recognize electricity theft cyber-attacks on smart
meters installed at residential units. We investigate various
auto-encoder architectures along with hyper-parameter opti-
mization to enhance the detection performance.

A. Simple Auto-encoder Architecture

The architecture of the SAE represents the simplest imple-
mentation of the anomaly detector. In Figure 3, we illustrate
the structure of the SAE. The anomaly detector first learns
the behavioral patterns of benign energy consumption data.
Then, it detects abnormality by assessing the deviation from
such patterns. This deviation is then used as an indication of
the presence of an electricity theft cyber-attack. An effective
approach to define anomalies is based on the reconstruction
errors, which can be achieved using stacked SAEs. Stacked
SAEs are used to reduce the dimension of the data during
the encoding stage and then to reconstruct the data in the
decoding stage. The difference between the original data and
the reconstructed data is denoted as the reconstruction error
[26]. The SAE is trained using the benign data to determine
the encoder and decoder parameters that minimize the recon-
struction error. Formally, we have H = fΘ(x) for the encoder
and R = gΘ(x) for the decoder, where x represents the rows
of XTR, and Θ denotes the SAE parameters determined by

min
Θ

C(x, gΘ(fΘ(x))), x ∈ XTR, (7)

where C(x, gΘ(fΘ(x))) denotes a cost function (i.e., the
mean squared error (MSE)) that penalizes gΘ(fΘ(x)) for
being dissimilar from x. Following the cost function (7), the
reconstruction error is expected to be small for benign data
and large for anomalies. We use the reconstruction error to
indicate how familiar the model is with a given test instance;
whenever it exceeds a certain threshold, an anomaly indicating
an electricity theft is detected. We adopt two SAE structures.

1) Fully Connected SAE: In the Fully Connected SAE (FC-
SAE), the encoder part comprises an input layer, a number of
dense hidden layers in addition to a latent layer. The decoder
part comprises a number of dense hidden layers as well as
an output layer [26]. The input layer has 48 neurons that
are fed with the energy consumption profile x ∈ XTR. The

(a) Fully connected SAE architecture.

(b) Sequence-to-sequence SAE architecture.

Latent
Layer

O
ri

gi
na

l I
np

ut

Hidden Dense Layers

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

. . .

. .
 .

. . .
 .

. .
 .

.

R
ec

on
st

ru
ct

ed
 O

ut
pu

tLSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

. . .

. .
 .

.

. .
 .

.. .
 .

O
ri

gi
na

l I
np

ut

. .
 .

.

. . .

. .
 .

. . .
 .

Latent
Layer

DecoderEncoder

. . .

. .
 .

.. .
 .

Hidden Dense Layers

R
ec

on
st

ru
ct

ed
 O

ut
pu

t

. .
 .

.

Hidden LSTM Layers Hidden LSTM Layers

DecoderEncoder

Fig. 3. Illustration of the SAE architecture.

hidden dense layers in the encoder part compress the input
into the latent layer l′, which is then filtered through the
decoder’s hidden dense layers to reconstruct the output. The
encoder and decoder’s hidden layers consist of L layers, each
layer being equipped with Nl neurons. Let wl

nn′ represent the
connection weight from neuron n′, which is in layer l − 1
to neuron n that is in layer l. The weight matrix is denoted
by W l. Define bln as the bias of neuron n in layer l. The
bias vector of layer l is denoted by bl. The weighted sum
of inputs to neuron n is zln =

∑
n′ wl

nn′a
l−1
n′ + bln, where

al = φ(zl) and φ(·) stands for the activation function. The
training of the SAE aims to find the model parameters W l

and bl, denoted by Θ, that satisfy (7). The minimization of
(7) is achieved using the iterative gradient descent algorithm
depicted in Algorithm 1, which assumes a stochastic gradient
descent (SGD) implementation with learning rate η. Notation
▽y denotes the partial derivative given y and K represents
the total number of training samples.

2) Sequence-to-Sequence SAE: The customer’s energy con-
sumption profile presents time-series data, which exhibits
obvious temporal correlation. While the FC-SAE offers low
computational complexity, such a structure does not have the
capability of exploiting the temporal correlations within the
electricity consumption profiles. Thus, a deep RNN-based
auto-encoder is expected to offer a better detection perfor-
mance compared to FC-SAEs. We utilize an RNN variation
based on LSTM [27] in order to handle the vanishing gradient
problem during the learning process of temporal correlations
throughout the long intervals. Although gated recurrent units
(GRU) might offer faster training time using less number of
gates, LSTM tends to provide better accuracy than GRU at the
expense of training time [27], [28]. Training time should not be
an obstacle to implementing LSTM since the training is mainly

5

Algorithm 1: FC-SAE Training

1 Input Data: XTR

2 Initialization: Weights W l and biases bl for all l
3 while not converged do
4 for each training sample x do
5 Encoder and Decoder:
6 Feed forward: Compute:

zl(x) = W lal−1(x) + bl and
al(x) = φ(zl(x)) for all layers
l = 1, . . . , l′, . . . , L

7 Back propagation: Compute:
8 ∇W lC and ∇blC
9 end

10 Weight and bias update:
11 W l = W l− η

K

∑
x ∇W lC, bl = bl− η

K

∑
x ∇blC

12 end
13 Output: Optimal parameters W l and bl for all layers

done offline and not in real time; for example, during the
billing period. Hence, we adopt LSTM. A deep LSTM-SAE
model consists of two LSTM-RNNs, where the first LSTM-
RNN is a deep LSTM encoder and the second one is a deep
LSTM decoder [29], [30]. The input to the LSTM encoder is
a time-series of the energy consumption profile (x ∈ XTR),
and hence, consists of 48 neurons. This time-series vector is
then encrypted into a hidden state by the LSTM encoder, an
operation that can be interpreted as finding a more compact
representation for the time-series data. Hence, the encoder’s
input layer is followed by a number of hidden LSTM layers L
each with Nl LSTM cells. The LSTM encoder output is then
used as an input to the LSTM decoder, which reconstructs
the original time-series data. The LSTM-SAE minimizes the
reconstruction mean-square-error.

An LSTM cell (memory unit) has a state ct at time instant
t and yields as an output a hidden state ht. Accessing such a
cell is managed by a set of gates, namely, input, forget, and
output gates, iE,t, fE,t, and oE,t, respectively, for the encoder.
For the decoder, the set of gates are input, forget, and output
gates, iD,t, fD,t, and oD,t, respectively. The LSTM cell receives
two external inputs, namely, the energy consumption value at
time instant t, xt that is the value of x at time instant t, and
the LSTM cells’ preceding hidden states that are in the same
layer, which are hE,t−1 and hD,t−1 for the encoder and decoder,
respectively. In addition, an internal input is included, that is
the cell state cE,t−1 for the encoder and cD,t−1 for the decoder.
All these inputs are added along with a bias, and activation
functions are applied so that the input, forget, and output gates
are activated. The states h′ and c′ are present at the rearmost
time step of the encoder, which are then used as the decoder’s
initial hidden and cell states. In Algorithm 2, lines 9 - 13 and
18 - 22 present the computations of iE/D,t, fE/D,t, and oE/D,t

where W l
(·), U

l
(·), V

l
(·), and bl(·) denote the learnable weight

matrices and bias vectors. The optimal learnable parameters
are obtained by solving (7), a step which is achieved via the
iterative gradient descent approach shown in Algorithm 2.

Algorithm 2: LSTM-SAE Training

1 Input Data: XTR

2 Initialization: Weights U l
(·), W

l
(·), V

l
(·), and bias bl(·)

∀l
3 while not converged do
4 for each training sample x do
5 Feed forward:
6 Encoder:
7 for each hidden layer l = 1, . . . , L/2 do
8 for each time step t do
9 ilE,t =

φ(W l
ix

l
t+U l

ih
l
E,t−1+V l

ic
l
E,t−1+bli),

10 f l
E,t =

φ(W l
fx

l
t+U l

fh
l
E,t−1+V l

fc
l
E,t−1+blf),

11 clE,t = f l
E,tc

l
E,t−1 + ilE,t tanh(W

l
cx

l
t +

U l
ch

l
E,t−1 + blc),

12 ol
E,t =

φ(W l
ox

l
t +U l

oh
l
E,t−1 + V l

oc
l
E,t + blo),

13 hl
E,t = ol

E,t tanh(c
l
E,t),

14 end
15 h′l = hl

E,t,
16 c′l = clE,t.
17 end
18 Decoder:
19 At initial time step, the decoder hidden and cell

states are equal to h′l and c′l and the output
of the encoder is fed as the input to the
decoder x̆

20 for each hidden layer l = L/2 + 1, . . . , L do
21 for each time step t do
22 ilD,t =

φ(W l
ix̆

l
t+U l

ih
l
D,t−1+V l

ic
l
D,t−1+bli),

23 f l
D,t =

φ(W l
f x̆

l
t+U l

fh
l
D,t−1+V l

fc
l
D,t−1+blf),

24 clD,t = f l
D,tc

l
D,t−1 + ilD,t tanh(W

l
cx

l
t +

U l
ch

l
D,t−1 + blc),

25 ol
D,t =

φ(W l
ox̆

l
t +U l

oh
l
D,t−1 + V l

oc
l
D,t + blo),

26 hl
D,t = ol

D,t tanh(c
l
D,t),

27 end
28 end
29 Back propagation: Compute:
30 ∇W l

(.)
C, ∇U l

(.)
C, ∇V l

(.)
C, and ∇bl

(.)
C

31 end
32 Weight and bias update:

W l
(.) = W l

(.) −
η
K

∑
x ∇W l

(.)
C

U l
(.) = U l

(.) −
η
K

∑
x ∇U l

(.)
C

V l
(.) = V l

(.) −
η
K

∑
x ∇V l

(.)
C

bl(.) = bl(.) −
η
K

∑
x ∇bl

(.)
C

33 end
34 Output: Optimal U l

(·), W
l
(·), V

l
(·), and bl(·) ∀l.

6

B. Variational Auto-encoder Architecture
The VAE structure is shown in Figure 4. Since SAEs

represent a deterministic mapping, they can be modeled as a
mapping to the mean value of a Dirac delta distribution. Hence,
they cannot capture the variance. If both normal and anoma-
lous (electricity theft) data share the same mean but present
different variance behavior, an SAE-based model might not
be able to recognize the anomalies. On the other hand, a VAE
represents a better alternative for anomaly detection. VAEs are
directed probabilistic graphical models (PGMs) in which the
posteriors are determined using neural networks [1]. VAEs
assume that any point x in the data is generated based on
the continuous random variable k, which is unobserved. First,
through the prior distribution p(k), we generate a particular
value k′. Next, based on the conditional distribution p(x|k),
we generate the data instance x′. Because the values of k
are unknown and inferring the exact distribution p(k|x) is
intractable, both, p(k|x) for the encoder and p(x|k) for the
decoder neural networks are approximated by the VAE. q(k|x)
depicts the approximation of the true posterior p(k|x). For data
point x, the log-likelihood is

log p(x) = DKL(q(k|x)||p(k|x)) + L(Θ;x), (8)

where the Kullback–Leibler (KL) divergence is denoted by
DKL, the model parameters are expressed by Θ, and the log-
likelihood’s variational lower bound is given by

L(Θ;x) = −DKL(q(k|x)||p(x)) + Eq(k|x)[log pΘ(x|k)]. (9)

Since L(Θ;x) ≤ log p(k), Θ are learned through optimizing
L(Θ;x). To carry out this step, a re-parameterization trick [1]
that models the random variable k ∼ q(k|x) as a deterministic
variable is applied. k = µ + σN in which N refers to a
normal distribution that has zero mean and unit variance if the
latent variables are represented as univariate Gaussian. Hence,
the mean (µ) and variance (σ2) of the Gaussian distribution
are determined by the encoder forward-pass’s activations [31].
Similarly, the distribution parameters of p(x|k) are determined
by the decoder forward-pass’s activations. Hence, a VAE
models the data distribution parameters and not the data itself.

In Section III.A, for the anomaly score, the reconstruction
error was utilized. However, we utilize the reconstruction
probability to reflect the anomaly score. Specifically, let the
probabilistic encoder and decoder assume a multi-variant
Gaussian distribution in the latent variable space and the orig-
inal input space, respectively. The probabilistic encoder that
is trained using the benign energy consumption profile data
will determine the distribution parameters of the input data.
Then, a number of samples will be generated using the distri-
bution parameters and the probabilistic decoder will recover
the distribution parameters. Using the recovered parameters,
the probability that the original data is generated from that
distribution is calculated. The average of such probabilities
over all samples is referred to as the reconstruction probability.
Since the VAE model parameters are based on benign data,
such a reconstruction probability will be low for anomalous
data. Hence, a threshold is defined, and if the reconstruction
probability is below that threshold, an electricity theft is
detected. Next, two structures are discussed for the VAEs.

(a) Fully connected VAE architecture.

(b) Sequence-to-sequence VAE architecture.

Distribution
Sample

Latent
Distribution

Distribution
Sample

. .
 .

. .
 .

μ

μ

σ

σ

Latent
Distribution

. .
 .

. .
 .

μ

μ

σ

σ

O
ri

gi
na

l I
np

ut

LSTM
Cell

LSTM
Cell

LSTM
Cell

. .
 .

. .
 .

.

Hidden LSTM Layers

Hidden Dense Layers

O
ri

gi
na

l I
np

ut

. .
 .

.

. . . .

. .
 .

. . .
 .

. . . .

. .
 .

.. .
 .

Hidden Dense Layers

R
ec

on
st

ru
ct

ed
 O

ut
pu

t

. .
 .

.

LSTM
Cell

LSTM
Cell

. . . .

. .
 .

.

R
ec

on
st

ru
ct

ed
 O

ut
pu

tLSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

. . . .

. .
 .

. .
 .

.. .
 .

.

Hidden LSTM Layers

DecoderEncoder

DecoderEncoder

Fig. 4. Illustration of the VAE architecture.

1) Fully Connected VAE: The Fully Connected VAE (FC-
VAE) and FC-SAE present a similar structure in terms of the
input layer and the hidden dense layers. However, when it
comes to generative modeling, VAE presents an advantage
over the SAE because its latent space is continuous in a way
that makes random sampling simpler for interpolation. This is
carried out by producing the mean µx and variance vectors
σ2
x to form the parameters of the random variable vector,

which is then passed to the decoder. For the generation of
the consumption data samples, the decoder uses µx and σ2

x.
To detect stealth, the reconstruction probability is calculated
and compared to a threshold. The loss function of the VAE
constrains the reconstruction and regularisation terms as

Ĉ = ||x− x̃Θ||2 +DKL(N (µx,σ
2
x)||N (0, 1)), (10)

where x̃Θ is the reconstructed output as function of the
model’s parameter Θ, N (µx, σ

2
x) is a general distribution, and

N (0, 1) stands for a standard normal distribution.
FC-VAE uses a similar training algorithm structure as the

FC-SAE shown in Algorithm 1 to determine the model param-
eters Θ. However, the VAE generates the parameters of the
probability distribution (µx and σ2

x). With these parameters
and assuming a Gaussian distribution, the decoder generates
the output. Using (10), the loss is computed. To update the
encoder and decoder’s parameters, back propagation is used.
Algorithm 3 is similar to Algorithm 1, with the addition of
generating µx and σ2

x in lines 11 and 12 as well as computing
the optimal parameters given the iterative gradient descent.

2) Sequence-to-Sequence VAE: LSTM-VAEs can be intro-
duced by considering LSTM structures for the probabilistic
encoders and decoders [32]. Originally, LSTM-VAEs were
used to generate data for language modeling applications [33].
However, herein, we utilize them for anomaly detection. The
structure of LSTM-VAE has the same components as LSTM-
SAE with the addition of a latent distribution as in FC-VAE.

7

Algorithm 3: FC-VAE Training

1 Input Data: XTR

2 Initialization: Weights W l and biases bl for all layers
l and weights V µ and V σ and biases bµ and bσ for
the latent layer

3 while not converged do
4 for each training sample x do
5 Feed forward:
6 Encoder:
7 for all layers l = 1, . . . , L/2 do
8 zl(x) = W lal−1(x) + bl and

al(x) = φ(zl(x))
9 end

10 Generate µx and σ2
x:

11 µx = φ(V µa
l−1(x)) + blµ

12 σ2
x = φ(V σa

l−1(x)) + blσ
13 Sample data x̆ from N (µx,σ

2
x)

14 Decoder:
15 for all layers l = L/2 + 1, . . . , L do
16 zl(x̆) = W lal−1(x̆) + bl and

al(x̆) = φ(zl(x̆))
17 end
18 Back propagation: Compute:
19 ∇W lĈ, ∇V (.)

Ĉ and ∇bl
(.)
Ĉ

20 end
21 Weight and bias update:
22 W l = W l − η

K

∑
x ∇W lĈ,

V (.) = V (.) − η
K

∑
x ∇V (.)

Ĉ,
bl(.) = bl(.) −

η
K

∑
x ∇bl

(.)
C

23 end
24 Output: Optimal parameters Wl, V µ, V σ , bl, bµ, and

bσ for all layers

The training algorithms for LSTM-SAE and LSTM-VAE are
also similar in terms of the logic, but LSTM-VAE, similar
to Algorithm 3, generates µx and σ2

x that are utilized to
generate the samples to be used within the decoder as shown
in Algorithm 4 in lines 19 - 32.

C. Auto-encoder with Attention Architecture

For the aforementioned models, there is a limitation with
regards to the size of the input and output sequences, which
restricts the detection performance. The AEA structure is
shown in Figure 5. In the SAE and VAE models, the encoder’s
responsibility is to examine the time steps of the input as well
as encode the whole sequence into a context vector with fixed
length. The decoder’s responsibility is to examine the time
steps of the output while looking through the context vector.
Thus, the capability of such models is limited to the fixed-sized
internal representation developed by the encoder. The AEA
model extends the architecture and addresses this limitation
[34]. Attention helps overcome the performance loss of the
traditional seq2seq networks by assigning different weights
and scores for each time step. This is carried out to produce

Algorithm 4: LSTM-VAE Training

1 Input Data: XTR

2 Initialization: Weights U l
(·), W

l
(·), V

l
(·), and bias bl(·)

∀l
3 while not converged do
4 for each training sample x do
5 Feed forward:
6 Encoder:
7 for each hidden layer l = 1, . . . , L/2 do
8 for each time step t do
9 ilE,t =

φ(W l
ix

l
t+U l

ih
l
E,t−1+V l

ic
l
E,t−1+bli),

10 f l
E,t =

φ(W l
fx

l
t+U l

fh
l
E,t−1+V l

fc
l
E,t−1+blf),

11 clE,t = f l
E,tc

l
E,t−1 + ilE,t tanh(W

l
cx

l
t +

U l
ch

l
E,t−1 + blc),

12 ol
E,t =

φ(W l
ox

l
t +U l

oh
l
E,t−1 + V l

oc
l
E,t + blo),

13 hl
E,t = ol

E,t tanh(c
l
E,t),

14 end
15 h′l = hl

E,t,
16 c′l = clE,t.
17 end
18 Generate µx and σ2

x:
19 µx = φ(V µa

l−1(x)) + blµ
20 σ2

x = φ(V σa
l−1(x)) + blσ

21 Sample data x̆ from N (µx,σ
2
x)

22 Decoder:
23 At initial time step, the decoder hidden and cell

states are equal to h′ and c′

24 for each hidden layer l = L/2 + 1, . . . , L do
25 for each time step t do
26 ilD,t =

φ(W l
ix̆

l
t+U l

ih
l
D,t−1+V l

ic
l
D,t−1+bli),

27 f l
D,t =

φ(W l
f x̆

l
t+U l

fh
l
D,t−1+V l

fc
l
D,t−1+blf),

28 clD,t = f l
D,tc

l
D,t−1 + ilD,t tanh(W

l
cx

l
t +

U l
ch

l
D,t−1 + blc),

29 ol
D,t =

φ(W l
ox̆

l
t +U l

oh
l
D,t−1 + V l

oc
l
D,t + blo),

30 hl
D,t = ol

D,t tanh(c
l
D,t),

31 end
32 end
33 Back propagation: Compute ∇W l

(.)
C,

∇U l
(.)
C, ∇V l

(.)
C, and ∇bl

(.)
C

34 end
35 Weight and bias update:

W l
(.) = W l

(.) −
η
K

∑
x ∇W l

(.)
C

U l
(.) = U l

(.) −
η
K

∑
x ∇U l

(.)
C

V l
(.) = V l

(.) −
η
K

∑
x ∇V l

(.)
C

bl(.) = bl(.) −
η
K

∑
x ∇bl

(.)
C

36 end
37 Output: Optimal U l

(·), W
l
(·), V

l
(·), and bl(·) ∀l.

8

R
econstructed O

utput

O
ri

gi
na

l I
np

ut LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

LSTM
Cell

Attention
Layer

LSTM
Cell

LSTM
Cell

LSTM
Cell

Hidden LSTM Layers

. . .

. .
 .

. . .
 .

. .
 .

.

LSTM
Cell

LSTM
Cell

. . .

. .
 .

.

. .
 .

.. .
 .

Hidden LSTM Layers

. .
 .

.

DecoderEncoder

Fig. 5. Illustration of the AEA architecture.

Architecture: LSTM Layer AAE

Alignment
score Softmax Multiplication

m s

!!,#$%&

!',#&

Fig. 6. Illustration of the attention layer.

a context vector that presents a view of the whole sequence
balanced by the learned weights.

Since the AEA model, by nature, is sequential, it only makes
sense to use a seq2seq algorithm when adding the attention
layer. The AEA architecture is similar to LSTM-SAE, with the
addition of a new layer, the attention layer, which is present
between the encoder and decoder [35]. Two inputs are fed
to the attention layer, namely, the encoder’s hidden state hL

E,t

at time step t and the decoder’s hidden state hL
D,t−1 at time

t− 1. The attention layer gives weights to different time steps
and hence gives higher importance to time steps that provide
higher contribution towards acquiring the desired output. Thus,
in case of a theft, the reconstruction error is higher. This is
achieved using alignment scoring, Softmax, and multiplication.

The alignment scoring function of the attention layer, Γ, is a
neural network with a feed forward architecture that is jointly
trained with the model using two inputs h

L/2
E,t and hL

D,t−1.
The neural network Γ learns weights that give significance to
important time steps. The alignment score, m, is the output
of this feed forward neural network and is given by

m = Γ(h
L/2
E,t ,hL

D,t−1). (11)

The attention weight is then a Softmax of alignment scores

s =
exp(m)∑
|m| exp(m)

. (12)

|m| denotes the cardinality of vector m. The context vector is
calculated as the weighted sum of the encoder’s hidden state
vectors:

cv,t =
∑
T

s× h
L/2
E,t . (13)

The input is passed through the hidden LSTM layers in
sequence before going to the attention layer where the afore-
mentioned process of linear combination takes place. Then,
they are passed to the latent layer. Finally, the reconstruction
takes place in cycled seq2seq LSTM layers. The training

algorithm of the AEA is described in Algorithm 5, which
presents a similar logic as Algorithms 2 and 4, but includes
the attention layer in the encoder section in lines 14 - 17.
The concatenation of cv,t and the reconstructed output x̃,∑

(cv,t, x̃) is fed to the hidden layers of the decoder.
For all of the built architectures, after training is completed

using XTR, we apply the test dataset XTST. If the cost
function, which computes the MSE between the original and
reconstructed electricity consumption for SAE and AEA, or
reconstruction probability for VAEs, is greater than a specific
threshold, a y = ‘1’ label will denote a malicious sample.
Else, y = ‘0’ label will be assigned to a benign sample.

D. Performance Evaluation of the Detectors
A true positive (TP) is a rightly detected malicious sample

and a true negative (TN) is a rightly detected benign sample. A
false positive (FP) is a wrongly detected benign sample and a
false negative (FN) is a wrongly detected malicious sample. To
assess the investigated detectors’ performance, we use multiple
evaluation metrics. Sensitivity (DR) is calculated using the
correctly identified malicious samples (DR = TP/(FN+TP)).
FA is computed using the incorrectly marked benign samples
(FA = FP/(FP+TN)). Specificity (SP) is expressed as (SP =
100-FA). Precision (PR) refers to the proportion of the rightly
identified malicious readings to all malicious readings (PR =
TP/(FP+TP)). Accuracy (ACC) is the arithmetic mean of DR
and SP. F1-score represents the harmonic mean of DR and
PR. The area under the receiver operating characteristic (ROC)
curve (AUC) plots TP against FP.

For each developed detector, we compare the predicted label
Y CAL against Y TST to build a confusion matrix that we use
to compute the performance evaluation metrics’ scores. To
obtain Y CAL for the anomaly detectors, we introduce thresh-
olds. Comparing the reconstruction error/probability versus
this threshold differentiates between a benign and malicious
sample. For anomaly detectors, the threshold is set based on
the median of the interquartile range (IQR) of the ROC curve.
Any score below that threshold value denotes a benign sample
and scores that are above that value denote malicious samples.

E. Hyper-parameter Optimization
The optimal choices of hyper-parameters enhance the de-

tection performance of the electricity stealth detectors. We
tuned a set of hyper-parameters as follows, the number of
hidden (dense or LSTM) layers (L); the number of layers in
the encoder and decoder is the same, the optimal number of
neurons in each layer (Nl), the optimizer (O), the dropout rate
(D), the hidden activation (AH), and the output activation func-
tion (AO). Algorithm 6 shows that the optimization of hyper-
parameter is implemented using multiple steps in sequence.
Since we aim to optimize a large number of hyper-parameters,
implementing an exhaustive grid search is not practical since it
results in high computational complexity. Thus, we perform a
sequential grid search [15]. We perform a cross-validation over
XTR of the ISET dataset to select the hyper-parameters. The
optimal setting of hyper-parameters is denoted by P ∗, which
leads to an improved DR against the validation set. MD is the
resultant model of a given combination of hyper-parameters.

9

Algorithm 5: LSTM-AEA Training

1 Input Data: XTR

2 Initialization: Weights U l
(·), W

l
(·), V

l
(·), and bias bl(·)

∀l, hL
D,t−1 and x̃

3 while not converged do
4 for each training sample x do
5 Feed forward:
6 Encoder:
7 for each hidden layer l = 1, . . . , L/2 do
8 for each time step t do
9 ilE,t =

φ(W l
ix

l
t+U l

ih
l
E,t−1+V l

ic
l
E,t−1+bli),

10 f l
E,t =

φ(W l
fx

l
t+U l

fh
l
E,t−1+V l

fc
l
E,t−1+blf),

11 clE,t = f l
E,tc

l
E,t−1 + ilE,t tanh(W

l
cx

l
t +

U l
ch

l
E,t−1 + blc),

12 ol
E,t =

φ(W l
ox

l
t +U l

oh
l
E,t−1 + V l

oc
l
E,t + blo),

13 hl
E,t = ol

E,t tanh(c
l
E,t),

14 Attention Layer:
15 if l = L/2 then
16 m = Γ(h

L/2
E,t ,hL

D,t−1),
s = exp(m)/

∑
|m| exp(m),

cv,t =
∑

T s× h
L/2
E,t .

17 end
18 end
19 h′l = hl

E,t, c
′l = clE,t.

20 end
21 x̆ =

∑
(cv,t, x̃)

22 Decoder:
23 At initial time step, the decoder hidden and cell

states are equal to h′l and c′l

24 for each hidden layer l = L/2 + 1, . . . , L do
25 for each time step t do
26 ilD,t =

φ(W l
ix̆

l
t+U l

ih
l
D,t−1+V l

ic
l
D,t−1+bli),

27 f l
D,t =

φ(W l
f x̆

l
t+U l

fh
l
D,t−1+V l

fc
l
D,t−1+blf),

28 clD,t = f l
D,tc

l
D,t−1 + ilD,t tanh(W

l
cx

l
t +

U l
ch

l
D,t−1 + blc),

29 ol
D,t =

φ(W l
ox̆

l
t +U l

oh
l
D,t−1 + V l

oc
l
D,t + blo),

30 hl
D,t = ol

D,t tanh(c
l
D,t),

31 end
32 end
33 Back propagation: Compute ∇W l

(.)
C,

∇U l
(.)
C, ∇V l

(.)
C, and ∇bl

(.)
C

34 end
35 Weight and bias update:

W l
(.) = W l

(.) −
η
K

∑
x ∇W l

(.)
C

U l
(.) = U l

(.) −
η
K

∑
x ∇U l

(.)
C

V l
(.) = V l

(.) −
η
K

∑
x ∇V l

(.)
C

bl(.) = bl(.) −
η
K

∑
x ∇bl

(.)
C

36 end
37 Output: Optimal U l

(·), W
l
(·), V

l
(·), and bl(·) ∀l.

Algorithm 6: Optimization of Hyper-parameter

1 Initialization: Optimizer = SGD, dropout rate = 0,
hidden activation = Relu, output activation = Softmax

2 Output: Optimized hyper-parameters
3 Input: Training set XTR

4 for L ∈ L do
5 for Nl ∈ N do
6 Apply algorithms 1-5 with L, Nl, and other

initial hyper-parameters;
7 Record DR and FA;
8 end
9 end

10 L∗, N∗
l , and other initial hyper-parameters initiate

MD1
11 for O ∈ O do
12 Apply algorithms 1-5 with MD1’s

hyper-parameters and o;
13 Record DR and FA;
14 end
15 L∗, N∗

l , O∗, and other initial hyper-parameters initiate
MD2

16 for D ∈ D do
17 Apply algorithms 1-5 with MD2’s

hyper-parameters and D;
18 Record DR and FA;
19 end
20 L∗, N∗

l , O∗, D∗, and other initial hyper-parameters
initiate MD3

21 for A
H∈AH

do
22 for A

O∈AO
do

23 Apply algorithms 1-5 with MD3’s
hyper-parameters, A

H
and A

O
;

24 Record DR and FA;
25 end
26 end
27 L∗, N∗

l , O∗, D∗, A∗
H, and A∗

O define the optimal
parameters.

IV. EXPERIMENTAL RESULTS

Keras sequential API is utilized for the purpose of training
and testing the detectors that we are investigating. All devel-
oped detectors (and benchmarks) are first trained offline at
the utility. Then, in real-time, online detection of malicious
samples takes place at the utility.

A. Benchmark Detectors

We compare the performance of the proposed detectors
against supervised classifiers and anomaly detectors. Super-
vised classifiers utilize both benign and malicious samples for
training and testing; they include shallow classifiers, namely,
multi-class SVM and Naı̈ve Bayes as well as deep classifiers,
namely, feed forward and LSTM. Anomaly detectors are
trained only on benign samples and then tested on both benign
and malicious samples and include shallow single-class SVM
and ARIMA. The SVM, Naı̈ve Bayes, and feed forward-based

10

x mid FC-SAE LSTM-SAE FC-VAE LSTM-VAE LSTM-AEA
0 0 0 0 0 0 0

0.05 0.05 0.365 0.35 0.425 0.545 0.7
0.1 0.1 0.49 0.445 0.49 0.65 0.73
0.15 0.15 0.58 0.5 0.6 0.75 0.74
0.2 0.2 0.68 0.6 0.7 0.8 0.9
0.25 0.25 0.75 0.75 0.85 0.83 0.945
0.3 0.3 0.81 0.9 0.95 0.88 0.96
0.35 0.35 0.85 0.94 0.965 0.91 0.984
0.4 0.4 0.9 0.96 0.975 0.945 0.985
0.45 0.45 0.925 0.97 0.975 0.96 0.991
0.5 0.5 0.945 0.98 0.985 0.97 0.999
0.55 0.55 0.949 0.99 0.985 0.98 0.999
0.6 0.6 0.951 0.99 0.99 0.985 0.999
0.65 0.65 0.952 0.99 0.99 0.99 0.999
0.7 0.7 0.955 0.99 0.995 0.99 0.999
0.75 0.75 0.96 0.99 0.999 0.992 0.999
0.8 0.8 0.97 0.99 0.999 0.995 0.999
0.85 0.85 0.98 0.99 1 0.997 0.999
0.9 0.9 1 1 1 0.999 0.999
0.95 0.95 1 1 1 0.999 0.999

1 1 1 1 1 1 1
0.5 0.81009524 0.825 0.85109524 0.86509524 0.90119048

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 p
os

iti
ve

 r
at

e

False positive rate

FC-SAE LSTM-SAE FC-VAE LSTM-VAE LSTM-AEA

Fig. 7. ROC curves for the proposed auto-encoders.

x mid Naïve Bayes ARIMA Single-class SVMMulti-class SVMFeed forwardLSTM
0 0 0 0 0 0 0 0

0.05 0.05 0.275 0.55 0.65 0.6 0.75 0.79
0.1 0.1 0.4 0.725 0.8 0.755 0.81 0.82

0.15 0.15 0.45 0.81 0.855 0.85 0.84 0.83
0.2 0.2 0.48 0.835 0.88 0.9 0.87 0.85

0.25 0.25 0.55 0.875 0.89 0.93 0.88 0.91
0.3 0.3 0.62 0.89 0.895 0.95 0.89 0.92

0.35 0.35 0.68 0.91 0.91 0.965 0.91 0.93
0.4 0.4 0.71 0.925 0.925 0.97 0.92 0.94

0.45 0.45 0.74 0.935 0.93 0.972 0.94 0.97
0.5 0.5 0.76 0.955 0.94 0.975 0.94 0.97

0.55 0.55 0.8 0.965 0.948 0.98 0.94 0.98
0.6 0.6 0.85 0.97 0.95 0.985 0.945 0.985

0.65 0.65 0.87 0.975 0.955 0.985 0.95 0.985
0.7 0.7 0.9 0.98 0.96 0.989 0.955 0.989

0.75 0.75 0.92 0.985 0.9625 0.99 0.96 0.99
0.8 0.8 0.93 0.996 0.97 0.995 0.97 0.995

0.85 0.85 0.94 0.999 0.975 0.999 0.98 0.999
0.9 0.9 0.95 0.999 0.98 0.999 0.98 0.999

0.95 0.95 0.97 1 0.99 1 0.99 1
1 1 1 1 1 1 1 1

0.5 0.70452381 0.87042857 0.87454762 0.89471429 0.87714286 0.89771429

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 p
os

iti
ve

 r
at

e

False positive rate
Naïve Bayes ARIMA Single-class SVM
Multi-class SVM Feed forward LSTM

Fig. 8. ROC curves for the benchmark detectors.

detectors are static classifiers that are incapable of capturing
the time-series nature of the energy data. The ARIMA model
is dynamic and capable of capturing temporal dependencies,
but has a shallow architecture. The LSTM model is dynamic
and has a deep structure, but it represents a supervised model.

B. Threshold Values

To plot the ROC curves and determine the threshold values,
we utilize the same cross-validation over XTR of the ISET
dataset discussed in Section III.E. Figures 7 and 8 plot the
ROC curves for the benchmark detectors and auto-encoders,
respectively. Figures 7 and 8 are utilized to obtain the optimal
threshold values for the anomaly detectors to recognize benign
and malicious samples. After dividing each curve into three
quartiles and taking the median of IQR, the optimal threshold
values are: 0.58 and 0.45 for ARIMA and single-class SVM,
respectively, 0.58 and 0.61 for FC-SAE and LSTM-SAE,
respectively, 0.43 and 0.47 for FC-VAE and LSTM-VAE,
respectively, and 0.51 for AEA. Figure 8 also plots the ROC
curves for the rest of the supervised benchmark detectors for
comparison purposes.

C. Hyper-parameter Optimization

Sequential grid search is carried out to optimize the hyper-
parameters of the benchmark and proposed detectors. For the
shallow detectors, for the Naı̈ve Bayes classifier, the optimal
variance is found to be 10−9. For ARIMA, the differencing
degree and moving average values are 1 and 0, respectively.
For both SVM-based detectors, the optimal kernel and gamma

TABLE I
OPTIMAL HYPER-PARAMETER VALUES

Detector SAE VAE AEA
hyper-
parameter FC LSTM FC LSTM LSTM

L∗ 8 4 8 4 6
O∗ Adam Adam Adam SGD SGD
D∗ 0.4 0.2 0.4 0 0
A∗

H Sigmoid Sigmoid Relu Tanh Sigmoid
A∗

O Softmax Sigmoid Softmax Sigmoid Sigmoid

are scale and sigmoid, respectively. For the multi-class SVM,
the optimal regularization parameter is 1.0.

For the deep benchmark detectors and the proposed auto-
encoders, the optimal values are chosen from the following
ranges: for the number of layers L = {2, 3, 4, 5}, for the
number of neurons N = {100, 200, 300, 400, 500}, the op-
timizer O = {SGD, Adam, Adamax, and Rmsprop}, the
dropout rate D = {0, 0.2, 0.4, 0.5}, the hidden activation
functions AH = { Relu, Sigmoid, Linear, Tanh}, and the
output activation function AO = {Softmax, Sigmoid}. For
the feed forward model, L∗ = 5, N∗

l = 500, O∗: Adamax,
D∗ = 0, A∗

H: ReLU, and A∗
O: Softmax. For the LSTM model,

L∗ = 4, N∗
l = 300, O∗: Adam, D∗ = 0.2, A∗

H: ReLU, and
A∗

O: Sigmoid. The optimized hyper-parameter values for each
developed auto-encoders are summarized in Table I, which
shows that the LSTM-based detectors tend to have fewer layers
than the fully connected counterparts. Also, fully connected-
based detectors perform better with Softmax output activation
function, while Sigmoid is more suitable for the LSTM-based
detectors. The number of neurons Nl, for the FC-SAE, in the
four encoding layers are: (400, 300, 200, 100) with opposite
order in the decoder’s part. For the LSTM-SAE, the number
of neurons in the two encoder’s layers are (500, 300) with
opposite order in the decoder’s part. The number of neurons
is (500, 400, 300, 100) for the encoder part of the FC-VAE and
(400, 300) for the encoder side in the LSTM-VAE model, with
opposite order in the decoder side. The number of neurons
in the three layers within the encoder of the AEA model is
(500, 300, 200), with opposite order in the decoder side.

D. Performance Evaluation

Tables II and III summarize the performance of the devel-
oped detectors using the SGCC and ISET, respectively. The
reported performance is based on completely unseen data (test
set), which is different from the data used for selecting hyper-
parameters and constructing the ROC curves (validation set).

Using the SGCC dataset, in SAE, an improvement of 3%
in DR and 2% in FA is observed when LSTM-SAE is utilized
compared to FC-SAE since it captures better the time-series
nature of the electricity consumption data. This results in an
improved detection performance. When VAE detectors are
employed, the performance is further improved by 4− 7% in
DR and 3−5% in FA. This is because VAE captures better the
variability within the electricity consumption data compared
to SAE models. Compared to the fully connected models, the
LSTM-based model improves the detection performance by
3% in DR and FA. Compared to the VAE models, the AEA

11

TABLE II
PERFORMANCE EVALUATION USING THE SGCC DATASET

Detector/Metric DR FA SP PR ACC F1 AUC
FC-SAE 83 14 86 83 84.5 83 83

LSTM-SAE 86 12 88 87 87 86.5 85
FC-VAE 90 9 91 91 90.5 90.5 88

LSTM-VAE 93 6 94 93 93.5 93 90
LSTM-AEA 96 4 96 95 96 95.5 93

Benchmark Detectors
Naı̈ve Bayes 75 16 84 75 79.5 77 73

ARIMA 88 10 90 87 89 87 88
Single-class SVM 91 8.5 91.5 90 91 90 89

Feed forward 91 9.5 90.5 90 91 90.5 89
LSTM 91.5 9 91 90.5 91 91 90

Multi-class SVM 92 7.5 92.5 91 92 91.5 90

TABLE III
PERFORMANCE EVALUATION USING THE ISET DATASET

Detector/Metric DR FA SP PR ACC F1 AUC
FC-SAE 81 15 85 81 83 81 81

LSTM-SAE 85 13 87 85 86 85 82
FC-VAE 88 11 89 89 88.5 88.5 85

LSTM-VAE 91 7 93 91 92 91 86
LSTM-AEA 94 5 95 93 94.5 93.5 90

Benchmark Detectors
Naı̈ve Bayes 73 18 82 73 77.5 73 70

ARIMA 86 12 88 86 87 86 87
Single-class SVM 90 9 91 89 90.5 89.5 87

Feed forward 90 11 89 89 89.5 89.5 88
LSTM 90.5 10 90 89.5 90 90 89

Multi-class SVM 91 8 92 90 91.5 90.5 89

further improves the DR and FA by 3 − 6% and 2 − 5%,
respectively. Compared to the SAE models, the AEA provides
an improvement of up to 10 − 13% and 8 − 10% in DR
and FA, respectively. This is due to the included attention
layer that enhances the overall detection performance. These
results show that the LSTM-based models enhance the detec-
tion performance compared to fully connected models. The
AEA-based detector offers the best detection performance.
Compared to benchmark detectors, AEA improves the DR and
FA by 4− 21% and 3.5− 12%, respectively.

Using the ISET dataset, in SAE, an improvement of 4% in
DR and 2% in FA is observed when LSTM-SAE is utilized
compared to FC-SAE. When VAE detectors are employed,
the performance is further improved by 3 − 7% in DR and
2−4% in FA. The LSTM-based model improves the detection
performance compared to fully connected models by 3% in DR
and 4% in FA. The AEA further improves the DR and FA by
3−6% and 2−6%, respectively, compared to the VAE models,
while the improvement is up to 9− 13% and 8− 10% in DR
and FA, respectively, compared to the SAE models. Compared
to benchmark detectors, the AEA detector improves the DR
and FA by 3 − 21% and 3 − 13%, respectively. This shows
that the deep and recurrent architecture of AEA offers superior
performance compared to shallow and static classifiers, as well
as the rest of the investigated auto-encoder-based detectors.

Table IV shows the time taken to train the proposed detec-
tors on different sizes of the ISET dataset, where |XTR| size
is 60 million and | · | denotes the cardinality. Such training
is done offline and as can be observed, the AEA requires a

TABLE IV
COMPUTATIONAL COMPLEXITY USING THE ISET DATASET

Dataset SizeModel Metric 0.5|XTR| 0.75|XTR| |XTR|
Time (min) 72 97 137FC-SAE ACC (%) 70 78.5 83
Time (min) 90 127 183LSTM-SAE ACC (%) 75 83 86
Time (min) 81 103 141FC-VAE ACC (%) 79.5 86 88.5
Time (min) 97 132 188LSTM-VAE ACC (%) 83 90 92
Time (min) 102 142 193LSTM-AEA ACC (%) 86 93 94.5

TABLE V
PERFORMANCE EVALUATION AGAINST SEPARATE ATTACKS

Attack FunctionModel Metric (1) (2) (3) (4) (5) (6) AVG

DR 82.5 81 83 80 80 80 81FC-SAE FA 15 16 10 17 17 19 15.5
DR 84.5 83 90 82 84 83 84.5LSTM-SAE FA 13 15 9 14 14 14 13
DR 86 85 93 88 88 87 88FC-VAE FA 11 12 8 10 11 12 10.5
DR 88.5 88 95 91 91 90 90.5LSTM-VAE FA 7.5 8 4.5 8 8.5 8.5 7.5
DR 94 93 97 94 94 93 94LSTM-AEA FA 3.5 4 2.5 6.5 5.5 6.5 5

maximum time of 3 hours, which is low. The online testing of
all the developed detectors requires 1− 2 seconds to report a
decision. The detection is done on individual readings rather
than the aggregate consumption of all meters.

Table V shows the DR and FA of the proposed auto-
encoders when tested separately on each of the attack functions
discussed in Section II.B. Herein, the models are only trained
on the benign samples from the ISET dataset using the
same optimal hyper-parameters and threshold values discussed
in Sections IV.B and IV.C, respectively, without the use of
ADASYN since the data is already balanced. From the results,
it is evident that using the threshold values obtained using
Figure 7 provides consistent results in multiple experiments.
Although the DR varies depending on the complexity of the
attack, the average values are still consistent with Table III.

V. CONCLUSION

We introduced multiple deep auto-encoder anomaly detec-
tors for electricity stealth detection in this paper. They were
trained only on benign electricity consumption samples. This
approach overcame the limited availability issue of malicious
electricity consumption profiles. Two research questions were
answered in this paper: (a) whether the deep architectures can
offer superior detection performance compared to the shallow
detectors and (b) whether the recurrent LSTM-based architec-
tures can improve the detection performance compared to fully
connected detectors that are static. Our investigations revealed
that a notable improvement took place when the deep and
recurrent anomaly detectors were utilized compared to shallow
and static architectures. The best detection performance was
exhibited by the LSTM-AEA, which offered an improvement
of 4− 21% and 4− 13% in DR and FA, respectively.

12

REFERENCES

[1] A. Takiddin, M. Ismail, U. Zafar, and E. Serpedin, “Variational auto-
encoder-based detection of electricity stealth cyber-attacks in AMI
networks,” in 2020 28th European Signal Processing Conference (EU-
SIPCO). Amsterdam, Netherlands, Jan. 2021, pp. 1590–1594.

[2] A. Takiddin, M. Ismail, U. Zafar, and E. Serpedin, “Deep autoencoder-
based detection of electricity stealth cyberattacks in AMI networks,” in
2021 International Symposium on Signals, Circuits and Systems (ISSCS).
Iasi, Romania, Jul. 2021, pp. 1–6.

[3] P. Jokar, N. Arianpoo, and V. C. Leung, “Electricity theft detection in
AMI using customers’ consumption patterns,” IEEE Transactions on
Smart Grid, vol. 7, no. 1, pp. 216–226, Jan 2016.

[4] V. B. Krishna, C. A. Gunter, and W. H. Sanders, “Evaluating detectors
on optimal attack vectors that enable electricity theft and DER fraud,”
IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 4,
pp. 790–805, Aug 2018.

[5] “Electric sector failure scenarios and impact analyses - version 3.0,” Na-
tional Electric Sector Cybersecurity Organization Resource (NESCOR),
Dec 2015, [Online]. Available: https://smartgrid.epri.com/doc/NESCOR
%20Failure%20Scenarios%20v3%2012-11-15.pdf.

[6] A. Takiddin, M. Ismail, U. Zafar, and E. Serpedin, “Robust electricity
theft detection against data poisoning attacks in smart grids,” IEEE
Transactions on Smart Grid, vol. 12, no. 3, pp. 2675–2684, Dec 2020.

[7] R. Punmiya and S. Choe, “Energy theft detection using gradient boost-
ing theft detector with feature engineering-based preprocessing,” IEEE
Transactions on Smart Grid, vol. 10, no. 2, pp. 2326–2329, Jan 2019.

[8] T. S. Murthy, N. Gopalan, and V. Ramachandran, “A naive bayes
classifier for detecting unusual customer consumption profiles in power
distribution systems - APSPDCL,” in 2019 Third International Confer-
ence on Inventive Systems and Control (ICISC). Coimbatore, India,
Mar. 2020, pp. 673–678.

[9] R. Wu, L. Wang, and T. Hu, “Adaboost-SVM for electrical theft
detection and GRNN for stealing time periods identification,” in IECON
2018 - 44th Annual Conference of the IEEE Industrial Electronics
Society. Washington, DC, USA, Oct. 2018, pp. 3073–3078.

[10] S. Li, Y. Han, X. Yao, S. Yingchen, J. Wang, and Q. Zhao, “Electricity
theft detection in power grids with deep learning and random forests,”
Journal of Electrical and Computer Engineering, vol. 2019, Oct 2019.

[11] A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, and S. Mishra,
“Decision tree and svm-based data analytics for theft detection in smart
grid,” IEEE Transactions on Industrial Informatics, vol. 12, no. 3, pp.
1005–1016, Mar 2016.

[12] Z. Yan and H. Wen, “Electricity theft detection base on extreme
gradient boosting in AMI,” IEEE Transactions on Instrumentation and
Measurement, vol. 70, pp. 1–9, Jan 2021.

[13] M. Nabil, M. Ismail, M. Mahmoud, M. Shahin, K. Qaraqe, and E. Ser-
pedin, “Deep learning-based detection of electricity theft cyber-attacks
in smart grid AMI networks,” pp. 73–102, Aug 2019.

[14] M. Nabil, M. Mahmoud, M. Ismail, and E. Serpedin, “Deep recurrent
electricity theft detection in AMI networks with evolutionary Hyper-
Parameter tuning,” in 2019 International Conference on Internet of
Things (iThings). Atlanta, GA, USA, Jul. 2019, pp. 1002–1008.

[15] A. Takiddin, M. Ismail, M. Nabil, M. Mahmoud, and E. Serpedin,
“Detecting electricity theft cyber-attacks in AMI networks using deep
vector embeddings,” IEEE Systems Journal, pp. 1–10, Oct 2020.

[16] A. Ullah, N. Javaid, O. Samuel, M. Imran, and M. Shoaib, “CNN and
GRU based deep neural network for electricity theft detection to secure
smart grid,” in 2020 International Wireless Communications and Mobile
Computing (IWCMC). Limassol, Cyprus, Jun. 2020, pp. 1598–1602.

[17] M. N. Hasan, R. N. Toma, A.-A. Nahid, M. M. M. Islam, and J.-M.
Kim, “Electricity theft detection in smart grid systems: A cnn-lstm based
approach,” Energies, vol. 12, no. 17, Aug 2019.

[18] J. Wang, C. Roberts, G. Vidal, and S. Leichenauer, “Anomaly detection
with tensor networks,” Jun 2020.

[19] V. Badrinath Krishna, R. K. Iyer, and W. H. Sanders, “ARIMA-Based
modeling and validation of consumption readings in power grids,” in
Critical Information Infrastructures Security. Springer International
Publishing, May 2016, pp. 199–210.

[20] S. K. Singh, R. Bose, and A. Joshi, “PCA based electricity theft detection
in advanced metering infrastructure,” in 7th International Conference on
Power Systems (ICPS). Pune, India, Dec. 2017, pp. 441–445.

[21] J. Yeckle and B. Tang, “Detection of electricity theft in customer con-
sumption using outlier detection algorithms,” in 2018 1st International
Conference on Data Intelligence and Security (ICDIS). South Padre
Island, TX, USA, Apr. 2018, pp. 135–140.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Jun 2017.

[23] Z. Zheng, Y. Yang, X. Niu, H.-N. Dai, and Y. Zhou, “Wide and deep
convolutional neural networks for electricity-theft detection to secure
smart grids,” IEEE Transactions on Industrial Informatics, vol. 14, no. 4,
pp. 1606–1615, Dec 2018.

[24] “Irish Social Science Data Archive.” [Online]. Available: http:
//www.ucd.ie/issda/data/commissionforenergyregulationcer/

[25] C. Lu, S. Lin, X. Liu, and H. Shi, “Telecom fraud identification based
on adasyn and random forest,” in 2020 5th International Conference
on Computer and Communication Systems (ICCCS). Shanghai, China,
Jun. 2020, pp. 447–452.

[26] F. Farahnakian and J. Heikkonen, “A deep auto-encoder based approach
for intrusion detection system,” in 2018 20th International Conference
on Advanced Communication Technology (ICACT). Chuncheon, Korea
(South), Feb. 2018, pp. 178–183.

[27] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, Oct 2016, vol. 1, no. 2.

[28] X. Liu, Z. Lin, and Z. Feng, “Short-term offshore wind speed forecast
by seasonal ARIMA-A comparison against GRU and LSTM,” Energy,
vol. 227, p. 120492, Jul 2021.

[29] A. M. Dai and Q. V. Le, “Semi-supervised sequence learning,” in
Advances in neural information processing systems, Nov 2015, pp.
3079–3087.

[30] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learn-
ing of video representations using LSTMs,” in International conference
on machine learning. Lille, France, Jul. 2015, pp. 843–852.

[31] M. S. Kim, J. P. Yun, S. Lee, and P. Park, “Unsupervised anomaly
detection of LM guide using variational autoencoder,” in 2019 11th
International Symposium on Advanced Topics in Electrical Engineering
(ATEE). Bucharest, Romania, May 2019, pp. 1–5.

[32] O. Fabius and J. R. Van Amersfoort, “Variational recurrent auto-
encoders,” in 3rd International Conf. Learning Representations (ICLR).
San Diego, CA, USA, May 2015, pp. 1–5.

[33] S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and
S. Bengio, “Generating sentences from a continuous space,” in 20th
SIGNLL Conference on Computational Natural Language Learning,
Berlin, Germany, Aug. 2016, pp. 10–21.

[34] T.-W. Sun and A.-Y. A. Wu, “Sparse autoencoder with attention mech-
anism for speech emotion recognition,” in 2019 IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS).
IEEE, 2019, pp. 146–149.

[35] Z. Zhao, Z. Bao, Z. Zhang, J. Deng, N. Cummins, H. Wang, J. Tao,
and B. Schuller, “Automatic assessment of depression from speech via
a hierarchical attention transfer network and attention autoencoders,”
IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 2,
pp. 423–434, Feb 2020.

