FAMU-FSU COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING

GEOTECHNICAL DESIGN CEG 4081 Spring 2024

Exam # 2

Two Hour Exam From 3:00 - 5:00 pm

By

Kamal Tawfiq. Ph.D., P.E., F.ASCE

1. For the given failure surface, determine the factor of safety of the slope. The soil properties are given in the figure. (20 points)

Slice #	α _i	h (m)	d (m)	W (kN)	$W \cos_{\alpha_i}$	W sinα _i	C (kN/m²)	∆l _i (m)	C ∆l;(kN)	u _i (kN/m²)	u _i ∆l _i (kN)	
1	-14	0.81	1.35					1.45		0		
2	-3.4	1.89	1.48					1.55		0		
3	9.27	2.835	1.48					1.55		0		
4	16.6	3.51	1.48					1.55		1.57		
5	26.6	3.78	1.48					1.74		6.33		
6	35.7	4.05	1.48					1.94		7.14		
7	49.4	2.97	1.48					2.5		0		
8	63.4	1.215	0.675					1.94		0		
<i>F</i> . <i>S</i> .	$=\frac{\sum Re}{\sum D}$	esisting l Driving M	Moment Ioment	$=\frac{\sum(c\Delta l_i)+1}{\sum(c\Delta l_i)}$	$\frac{\sum(W_i cos\alpha_i - u_i)}{\sum W_i sin\alpha_i}$	l _i)tanØ	O r = 9.50m					
5										6 7	$8 \frac{\theta_i}{Flow line}$ $\gamma = 20 \text{ kN/m}^3$ $\phi = 29^\circ$	

Scale: 1 cm = 1.36 m

2 - Using the ordinary method of slices, determine the factor of the given slope. (20 points)

Equipotentioal lines

 $c = 10 \text{ kN/m}^2$

<u>3 - Given</u>:

Figure 3 shows a square footing. The inclined load Q = 110 kips. The width of the foundation B = 4'

Determine if the given foundation is adequate to carry the given vertical load. Use F.S. = 3 (25 points)

Q = 110 kips											
W.T		2ft									
					Ţ			,	$\gamma_1 =$	115	pcf
		-		В				-			
					i			γ ₂ φ ₂ c 2	= 12 = 3 = 8	20 p 2º 00 p	cf sf
$q_{ult} = c N_c + q N_q + 0.5 \gamma B N_{\gamma}$ $q_{ult} = 1.3 c N_c + q N_a + 0.4 \gamma B N_{\gamma}$											
	q	_{//t} = 1.	3 c M	V _c + q	ı N _q +	- 0.3	γB	N_{γ}			
TA	BLE 2.1	Terzaghi	's Bear	ing Cap	acity Fa	ctors—I	Eqs. (2.32), (2.	33), and (2.34)	
φ	N _c	N _q N	φ	N _c	N _q	N _y	ф	N _c	N _q	N _Y	
0 1 2	5.70 6.00 6.30	1.00 0.0 1.1 0.0 1.22 0.0	0 17 01 18 04 19	14.60 15.12 16.57	5.45 6.04 6.70	2.18 2.59 3.07	34 35 36	52.64 57.75 63.53	36.50 41.44 47.16	38.04 45.41 54.36	
5 4 5 6	6.97 7.34 7.73	1.35 0.0 1.49 0.1 1.64 0.1 1.81 0.2	0 21 4 22 0 23	17.69 18.92 20.27 21.75	8.26 9.19 10.23	5.04 4.31 5.09 6.00	38 39 40	77.50 85.97 95.66	61.55 70.61 81.27	78.61 95.03 115.31	
7 8 9	8.15 8.60 9.09	2.00 0.2 2.21 0.3 2.44 0.4	27 24 15 25 14 26	23.36 25.13 27.09	11.40 12.72 14.21	7.08 8.34 9.84	41 42 43	106.81 119.67 134.58	93.85 108.75 126.50	140.51 171.99 211.56	
10 11 12 13	9.61 10.16 10.76 11.41	2.69 0.2 2.98 0.6 3.29 0.8 3.63 1.0	6 27 69 28 65 29 64 30	29.24 31.61 34.24 37.16	15.90 17.81 19.98 22.46	13.70 16.18 19.13	44 45 46 47	151.95 172.28 196.22 224.55	147.74 173.28 204.19 241.80	261.60 325.34 407.11 512.84	
14 15 16	12.11 12.86 13.68	4.02 1.2 4.45 1.5 4.92 1.8	26 31 32 32 33	40.41 44.04 48.09	25.28 28.52 32.23	22.65 26.87 31.94	48 49 50	258.28 298.71 347.50	287.85 344.63 415.14	650.87 831.99 1072.80	

<u>4- Given</u>

The soil layers and their properties are shown in the figure. The ground water table is at 2ft from the ground surface. For the square footing (6'x6') shown in the figure determine

- 1. The elastic settlement of the sandy layer(S_e) (10 points)
- 2. The consolidation settlement (S_c) (15 points)

5. Answer the following questions (10 points)

1. What is the main difference between ordinary method of slices and the simplified Bishop method. (2 point)

The Terzaghi's bearing capacity equation is the only method available to determine bearing capacity of shallow foundations
 (2 point)

4. The method of slices for slope stability analysis can be used for the following soils (Circle the right answer) (2 point)

i- c -Soil ii- φ-Soil iii- All soils

5. The consolidation settlement equation in problem 4 is used to determine the consolidation settlement at time = ∞ (2 point)

True____

False_____