
1) For the cantilever retaining wall shown in the following figure, let the following data be given:

Wall dimensions:
$$H=18~ft$$
 , $X_1=18~in$, $X_2=30~in$, $X_3=4~ft$, $X_4=6~ft$, $X_5=2.75~ft$, $\alpha=10^\circ$, $D=4~ft$

Soil properties:
$$\gamma_1 = 117 \ Ib/ft^3$$
, ${\phi'}_1 = 34^\circ$, $\gamma_2 = 110 \ Ib/ft^3$, , ${\phi'}_2 = 18^\circ$, , ${c'}_2 = 800 \ Ib/ft^2$

Calculate the factor of safety with respect to overturning.

Refer to the diagram.

Using the equations, we have

$$\phi_1' = 34^\circ$$
; $\alpha = 10^\circ$; $K_a = 0.294$

$$P_a = \frac{1}{2} (H')^2 \gamma_1 K_a = \frac{1}{2} \left(\frac{(21.81)^2 (117)(0.294)}{1000} \right) = 8.18 \text{ kip/fi}$$

$$P_v = P_a \sin 10^\circ = 1.42 \text{ kip / ft}$$

$$P_h = P_a \cos 10^\circ = 8.06 \text{ kip} / \text{ ft}$$

Section	Weight (kip / ft)	Moment arm from C (ft)	Moment about C (kip-ft / ft)
1	$(1.5)(18)(\gamma_c) = 4.05$	$(1.5)(18)(\gamma_c) = 4.05$ 5.75	
2	$\frac{1}{2}(1.0)(18)(\gamma_c) = 1.35$	4 + 3/3(1) = 4.67	6.3
3	$(12.5)(2.75)(\gamma_c) = 5.156$	6.25	32.23
4	$\frac{(18+19.06)}{2}(6)(0.117) = 13.01$	$4+2.5+\frac{6}{2}=9.5$	123.6
	P _v = 1.42	12.5	17.75
	∑ 24.986		∑203.17

$$M_o = P_h \frac{H'}{3} = (8.06) \left(\frac{21.81}{3} \right) = 58.6 \text{ kip - ft / ft}$$

$$FS_{\text{overturning}} = \frac{203.17}{58.6} = 3.47$$

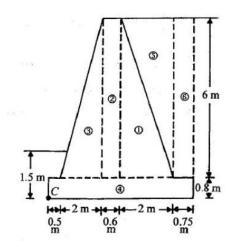
2) For the gravity wall shown in the following figure, Calculate the factor of safety with respect to overturning, given the following data:

Wall dimensions:
$$H=6m$$
 , $X_1=0.6$ m , $X_2=2$ m , $X_3=2$ m , $X_4=0.5$ m , $X_5=0.75$ m , $X_6=0.8$ m , $D=1.5$ m

Soil properties:
$$\gamma_1=16.5~kN/m^3$$
 , ${\phi'}_1=32^\circ$, $\gamma_2=18~kN/m^3$, , ${\phi'}_2=22^\circ$, , ${c'}_2=40~kN/m^2$

Use the Rankine active earth pressure in your calculation.

Refer to the figure.

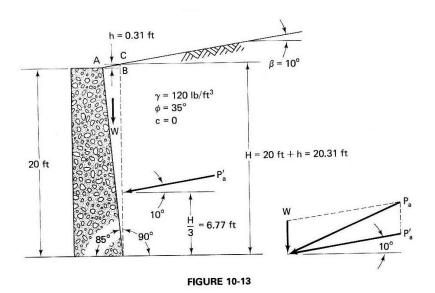

$$\phi_1' = 32^\circ; H' = 6.8 \text{ m}$$

$$K_a = \tan^2\left(45 - \frac{32}{3}\right) = 0.307$$

$$P_a = P_h = \frac{1}{2}\gamma(H')^2 K_a$$

$$= \frac{1}{2}(16.5)(6.8)^2(0.307)$$

$$= 117.1 \text{ kN/m}$$


Refer to the table.

Section	Weight (kN / m)	Moment arm from C (m)	Moment about C (kN-m/m)
1	$\frac{1}{2}(2)(6)(\gamma_c) = 141.48$	3.77	533.38
2	$(0.6)(6)(\gamma_c) = 84.89$	2.8	237.69
3	141.48	1.83	258.9
4	$(5.85)(0.8)(\gamma_c) = 110.35$	2.925	322.8
5	$\frac{1}{2}$ (2)(6)(16.5) = 99	4.43	438.57
6	(0.75)(6)(16.5) = 74.25	5.475	405.52
	Σ651.45		∑2196.86

$$M_O = \frac{H'P_o}{3} = \left(\frac{6.8}{3}\right)(117.1) = 265.4 \text{ kN - m/m}$$

$$\text{FS}_{\text{(overnaming)}} = \frac{\sum M_R}{\sum M_O} = \frac{2196.86}{265.4} = 8.28$$

3) Find the total active earth pressure per foot of the wall for the following situation:

Required

Total active earth pressure per foot of wall.

Solution

As shown on Fig. 10-13,

$$\tan 5^{\circ} = \frac{AB}{20 \text{ ft}}$$

$$AB = (20 \text{ ft})(\tan 5^{\circ}) = 1.75 \text{ ft}$$

Also,

$$\tan 10^{\circ} = \frac{BC}{AB} = \frac{h}{1.75 \text{ ft}}$$

$$h = (1.75 \text{ ft})(\tan 10^{\circ}) = 0.31 \text{ ft}$$

From Eqs. (10-10) and (10-11),

$$P'_{a} = \frac{1}{2}\gamma H^{2}K_{a}$$

$$K_{a} = \cos \beta \frac{\cos \beta - \sqrt{\cos^{2}\beta - \cos^{2}\phi}}{\cos \beta + \sqrt{\cos^{2}\beta - \cos^{2}\phi}}$$

$$(10-11)$$

$$\gamma = 120 \text{ lb/ft}^{3}$$

$$H = 20.31 \text{ ft}$$

$$\beta = 10^{\circ}$$

$$\phi = 35^{\circ}$$

$$K_{a} = (\cos 10^{\circ}) \frac{\cos 10^{\circ} - \sqrt{\cos^{2}10^{\circ} - \cos^{2}35^{\circ}}}{\cos 10^{\circ} + \sqrt{\cos^{2}10^{\circ} - \cos^{2}35^{\circ}}} = 0.282$$

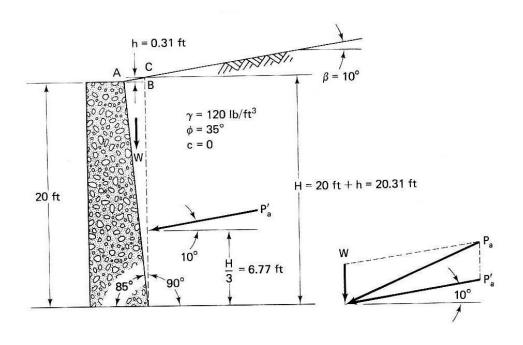
$$P'_{a} = (\frac{1}{2})(120 \text{ lb/ft}^{3})(20.31 \text{ ft})^{2}(0.282) = 6979 \text{ lb/ft}$$

$$W = (\frac{1}{2})(\gamma)(AB)(H)$$

$$W = (\frac{1}{2})(120 \text{ lb/ft}^{3})(1.75 \text{ ft})(20.31 \text{ ft}) = 2133 \text{ lb/ft}$$

$$P_{h} = P'_{a} \cos \beta = (6979 \text{ lb/ft}) \cos 10^{\circ} = 6873 \text{ lb/ft}$$

$$P_{v} = P'_{a} \sin \beta = (6979 \text{ lb/ft}) \sin 10^{\circ} = 1212 \text{ lb/ft}$$


$$\sum V = W + P_{v} = 2133 \text{ lb/ft} + 1212 \text{ lb/ft} = 3345 \text{ lb/ft}$$

$$\sum H = P_{h} = 6873 \text{ lb/ft}$$

Total active earth pressure
$$(P_a) = \sqrt{(\sum V)^2 + (\sum H)^2}$$

= $\sqrt{(3345 \text{ lb/ft})^2 + (6873 \text{ lb/ft})^2}$
= 7640 lb/ft

Problem 1)

For the following situation, considering the angle of wall friction between backfill and wall (δ) is 20°, find the active earth pressure per foot of wall by Coulomb theory.

Solution

From Eqs. (10-10) and (10-16),

$$P_a = \frac{1}{2}\gamma H^2 K_a \tag{10-10}$$

$$K_{\alpha} = \frac{\sin^{2}(\alpha + \phi)}{\sin^{2}\alpha \sin(\alpha - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \beta)}{\sin(\alpha - \delta)\sin(\alpha + \beta)}}\right]^{2}}$$
(10-16)

$$\gamma = 120 \text{ lb/ft}^3$$

$$H = 20 \text{ ft}$$

$$\alpha = 180^\circ - 95^\circ = 85^\circ$$

$$\phi = 35^\circ$$

$$\delta = 20^\circ$$

$$\beta = 10^\circ$$

$$K_a = \frac{\sin^2(85^\circ + 35^\circ)}{\sin^2(85^\circ) \sin(85^\circ - 20^\circ) \left[1 + \sqrt{\frac{\sin(35^\circ + 20^\circ) \sin(35^\circ - 10^\circ)}{\sin(85^\circ - 20^\circ) \sin(85^\circ + 10^\circ)}}\right]^2}$$

$$K_a = 0.318$$

$$P_a = (\frac{1}{2})(120 \text{ lb/ft}^3)(20 \text{ ft})^2(0.318) = 7630 \text{ lb/ft}$$

Problem 2)

Given:

- 1- A smooth vertical wall is 20 ft high and retains a cohesionless soil with $\gamma=120\frac{Ib}{ft3}$ and $\varphi=28^{\circ}$.
- 2- The top of the soil is horizontal and level with the top of the wall.
- 3- The soil surface carries a uniformly distributed load of 1000 $\frac{Ib}{ft^2}$.

Required:

- 1- Total active earth pressure on the wall per linear foot of wall.
- 2- Point of action of the total active earth pressure by Rankine theory.

Solution

From Eqs. (10-10) and (10-14) (for level backfill),

$$P_a = \frac{1}{2}\gamma H^2 K_a \tag{10-10}$$

$$K_a = \frac{1 - \sin \phi}{1 + \sin \phi} \tag{10-14}$$

$$K_a = \frac{1 - \sin 28^\circ}{1 + \sin 28^\circ} = 0.361$$

$$P_a = (\frac{1}{2})(120 \text{ lb/ft}^3)(20 \text{ ft})^2(0.361) = 8660 \text{ lb/ft}$$

Point of action for $P_a = H/3 = 20$ ft/3 = 6.67 ft from the base of the wall. From Eq. (10-18),

$$P' = qHK_a$$
 (10-18)
 $P' = (1000 \text{ lb/ft}^2)(20 \text{ ft})(0.361) = 7220 \text{ lb/ft}$

Point of action for P' = H/2 = 20 ft/2 = 10 ft from the base of the wall.

- 1. Total active earth pressure = $P_a + P' = 8660 \text{ lb/ft} + 7220 \text{ lb/ft}$ = 15,880 lb/ft.
- 2. Let the point of application of the total active earth pressure be "h" ft above the base of the wall. "h" is obtained by taking moments of forces (i.e., P_a and P') at the base of the wall.

$$(15,880 \text{ lb/ft})(h) = (8660 \text{ lb/ft})(6.67 \text{ ft}) + (7220 \text{ lb/ft})(10 \text{ ft})$$

 $h = 8.18 \text{ ft}$

Hence, total active earth pressure acts at 8.18 ft above the base of the wall.