Slope Stability Analysis Homework # 4 Spring 2023

Problem 1

The following figure shows a 15-ft cut through two soil strata. The lower is a highly impermeable cohesive soil. Shearing strength data between the two strata are as follows:

Cohesion=150 psf Angle of internal friction= 25° Unit weight of the upper layer= 105 pcf

Find: Driving force and resisting force and factor of safety against sliding

Problem 2

A 45° slope is excavated to a depth of 8 m in a deep layer of saturated clay of unit weight 19 kN/m³: the relevant shear strength parameters are $c_u = 65 \text{ kN/m}^2$ and $\phi_u = 0$. Determine the factor of safety for the trial failure surface specified in Fig. 9.3.

Problem 3

Given

The slope and data shown in Fig. 13-11.

Required

The factor of safety against failure by the stability number method.

Problem 4

Refer to Figure 4, Given: $\beta = 20^{\circ}$, $\gamma = 18 \text{ kN/m}^3$, $\phi = 25^{\circ}$, and c' = 14 kN/m². Find the height, H, that will have a factor of safety, F_s of 2.5 against sliding along the soil-rock interface.

Problem 5

For the infinite slope shown in Figure 5, find the factor of safely against sliding along the plane *AB*, given that H = 20 ft. γ = 110 pcf, ϕ = 20°, and c' = 500 psf. Note that there is seepage through the soil and that the groundwater table coincides with the ground surface.

Problem 6

Find the factor of safety for a 20 meter high 2H - I V slope shown in the following figure using ordinary method of slices. Each slice has a width of 5 meters.

 $\gamma = 16 \text{ kN/m}^3$

c=20 kPa

 $\phi = 200$

R=38.1 m

Example of how to determine W_1 and W_5 .

