
Slope Stability Analysis Homework #5 Fall 2022

Problem 1

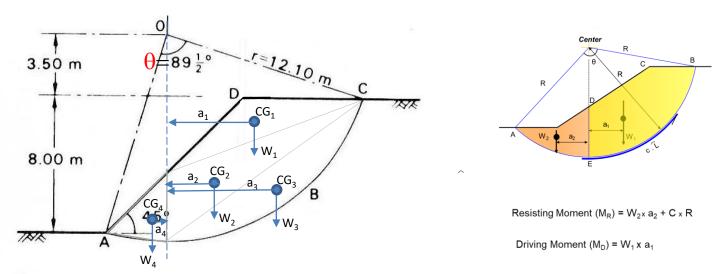
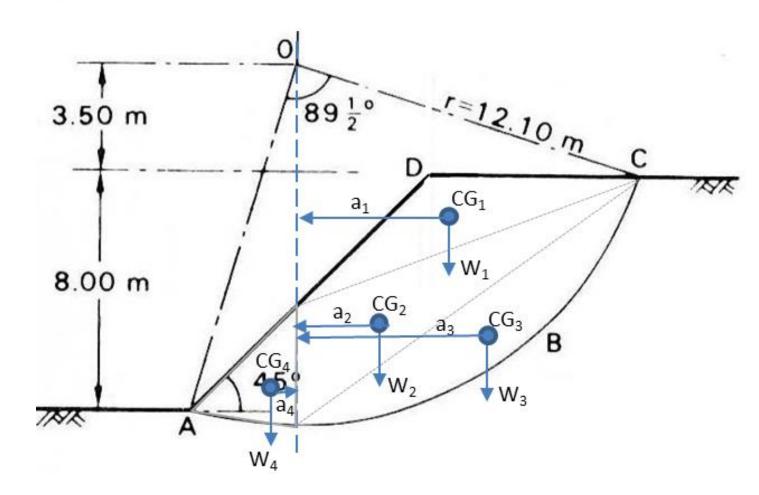
The following figure shows a 15-ft cut through two soil strata. The lower is a highly impermeable cohesive soil. Shearing strength data between the two strata are as follows:

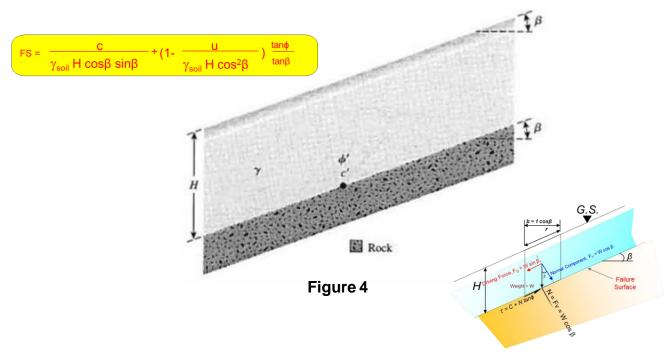
Cohesion=400 psf Angle of internal friction= 25° Unit weight of the upper layer= 105 pcf Height of the slope, H= 10 ft $\beta = 45^{\circ}$ $\theta = 30^{\circ}$

Find if the slope is safe or not

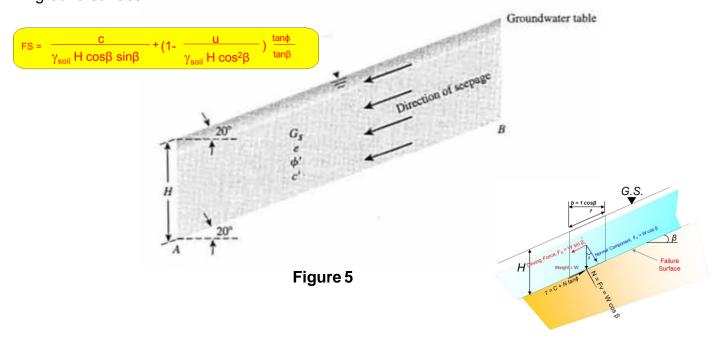
Problem 2

A 45° slope is excavated to a depth of 8 m in a deep layer of saturated clay of unit weight 19 kN/m³: the relevant shear strength parameters are $c_u = 65 \text{ kN/m}^2$ and $\phi_u = 0$. Determine the factor of safety for the trial failure surface specified in Fig. 9.3.

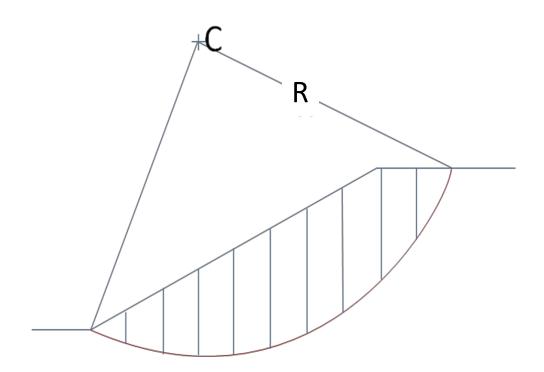

Figure 9.3 Example 9.1.

- 1. Draw the problem to scale
- 2. Divide the shapes to smaller areas (1, 2, 3, and 4)
- 3. Find the weight of each area (For example $A_1x\gamma_{soil} = W_1$)
- 4. Find where is the center of gravity for each area (CG₁, CG₂, ...)
- 5. Using the scale, measure the arms (a1, a2, a3, ..)
- 6. For A_4 you can approximate the area to triangle.
- 7. Now determine the driving moments $(W_1xa_1 + W_2xa_2 + W_3xa_3)$
- 8. Determine the resisting moments ($W_4xa_4 + c \times L_{curve}$)
- 9. $L_{curve} = \theta \times r \dots \theta$ in radians


Problem 3

Refer to Figure 4, Given: β = 20°, γ = 18 kN/m³, ϕ = 25°, and c' = 14 kN/m². Find the height, H, that will have a factor of safety, F_s of 2.5 against sliding along the soil-rock interface.

Problem 4


For the infinite slope shown in Figure 5, find the factor of safely against sliding along the plane AB, given that H=20 ft. $\gamma=110$ pcf, $\varphi=20^{\circ}$, and c'=500 psf. Note that there is seepage through the soil and that the groundwater table coincides with the ground surface.

Problem 5

Find the factor of safety for a 20 meter high 2H - I V slope shown in the following figure using ordinary method of slices. Each slice has a width of 5 meters.

 $\gamma = 16 \text{ kN/m}^3$ c = 20 kPa $\phi = 200$ R = 38.1 m

Slice	Width ∆x (ft)	Ave Heig ht (ft)	Weigh t (Kips)	θ_{i}	\mathbf{W}_{i} sin θ_{i}	$W_i \cos \theta_i$	u _i	Δl _i	U _i = u _i Δ I _i	N _i = W _i cosθ _i - U _i
1										
2										
3										
4										
5										
6										
7										
8										
9										
10			_	-			-	_		

$$\text{F.S.} = \frac{cL + \tan \varphi \sum_{i=1}^{i=n} (W_i cos\theta_i - u_i \Delta l_i)}{\sum_{i=1}^{i=n} W_i sin\theta_i}$$