3- Foundation Design

Foundation design consists of two steps

- 1- determine the bearing capacity of the foundation
- 2- determine the settlement of the foundation —

You can get suitable size of the foundation from this step

----> Foundation settlement should not exceed allowable settlement

Bearing Capacity Failure

Structural Foundations are grouped into two main groups.

1- Shallow Foundation

- Spread Footings
- Continuous Footings
- Combined Footings
- Mat Foundation

2- Deep Foundation

- Driven Piles
- Drilled Shaft
- Auger Cat Piles

3- Compensated or floating foundations

Shallow Foundation

Deep Foundation

Drilled Shafts

Auger Cast Pile

How Auger-Cast Piles are Installed

First the auger drills deep into the ground.

Then as the auger is brought back up, concrete flows out from its tip, filling the hole with concrete. To stabilize the top of the hole, a tube is placed in it and soil packed around it.

One last push to get the steel all the way in.

A steel rebar cage is lowered into the hole. The steel is guided all the way down the hole.

Analysis and Design of Shallow Foundation

- I- Bearing Capacity
- **II-** Settlement

I- ULTIMATE BEARING CAPACITY THEORIES:

- TERZAGHI'S BEARING CAPACITY THEORY
- GENERAL BEARING CAPACITY EQUATION

I- Bearing Capacity

TERZAGHI'S BEARING CAPACITY THEORY

Terzaghi's Equation (1943)

-Utilizing Prandtl's theory, Buisman (1940) expressed the maximum bearing capacity of soils by superimposing the contribution of cohesion, overburden pressure, and density of the soil, His expression is commonly referred to as Terzaghi's equation. Presumably, it was associated with Terzaghi's in the English speaking countries following the publication of his book (Theoretical Soil Mechanics) in 1943.

I- Bearing Capacity

TERZAGHI'S BEARING CAPACITY THEORY

FIG. 6.28 The problem of the bearing capacity of shallow foundations failing in general shear with parameters c and ϕ . Boundaries are simplified. I = active Rankine zone; II = Prandtl zone; III = passive Rankine zone.

I- ULTIMATE BEARING CAPACITY THEORIES:

1- TERZAGHI'S BEARING CAPACITY THEORY

Failure surface in soil at ultimate load for a continuous rough rigid foundation as assumed by Terzaghi

I- Bearing Capacity

FIGURE 2.4 Determination of P_{pc} ($\phi \neq 0, \gamma = 0, q = 0, c \neq 0$)

Ultimate Bearing Capacity

$$q_u = q_c + q_q + q_\gamma$$

$$q_u = cN_c + qN_q + \frac{1}{2}\gamma BN_\gamma$$

where N_c , N_a , and N_u = bearing capacity factors, and

	TABLE 2.1 Terzaghi's Bearing Capacity Factors—Eqs. (2.32), (2.33), and (2.34)											
	ф	N_c	N_q	Nγ	ф	N_c	N_q	N_{γ}	ф	N_c	N_q	N_{γ}
	0	5.70	1.00	0.00	17	14.60	5.45	2.18	34	52.64	36.50	38.04
	1	6.00	1.1	0.01	18	15.12	6.04	2.59	35	57.75	41.44	45.41
	2	6.30	1.22	0.04	19	16.57	6.70	3.07	36	63.53	47.16	54.36
	3	6.62	1.35	0.06	20	17.69	7.44	3.64	37	70.01	53.80	65.27
	4	6.97	1.49	0.10	21	18.92	8.26	4.31	38	77.50	61.55	78.61
	5	7.34	1.64	0.14	22	20.27	9.19	5.09	39	85.97	70.61	95.03
	6	7.73	1.81	0.20	23	21.75	10.23	6.00	40	95.66	81.27	115.31
	7	8.15	2.00	0.27	24	23.36	11.40	7.08	41	106.81	93.85	140.51
	8	8.60	2.21	0.35	25	25.13	12.72	8.34	42	119.67	108.75	171.99
	- 9	9.09	2.44	0.44	26	27.09	14.21	9.84	43	134.58	126.50	211.56
	10	9.61	2.69	0.56	27	29.24	15.90	11.60	44	151.95	147.74	261.60
	11	10.16	2.98	0.69	28	31.61	17.81	13.70	45	172.28	173.28	325.34
	12	10.76	3.29	0.85	29	34.24	19.98	16.18	46	196.22	204.19	407.11
	13	11.41	3.63	1.04	30	37.16	22.46	19.13	47	224.55	241.80	512.84
	14	12.11	4.02	1.26	31	40.41	25.28	22.65	48	258.28	287.85	650.87
	15	12.86	4.45	1.52	32	44.04	28.52	26.87	49	298.71	344.63	831.99
	16	13.68	4.92	1.82	33	48.09	32.23	31.94	50	347.50	415.14	1072.80
l '												

φ	N_{c}	N_q	$N_{\rm y}$	φ	N_c	N_q	N_{γ}	φ	N_{c}	N_q	N_{γ}
0	5.70	1.00	0.00	17	14.60	5.45	2.18	34	52.64	36.50	38.04
1	6.00	1.1	0.01	18	15.12	6.04	2.59	35	57.75	41.44	45.41
2	6.30	1.22	0.04	19	16.57	6.70	3.07	36	63.53	47.16	54.36
3	6.62	1.35	0.06	20	17.69	7.44	3.64	37	70.01	53.80	65.27
4	6.97	1.49	0.10	21	18.92	8.26	4.31	38	77.50	61.55	78.61
5	7.34	1.64	0.14	22	20.27	9.19	5.09	39	85.97	70.61	95.03
6	7.73	1.81	0.20	23	21.75	10.23	6.00	40	95.66	81.27	115.31
7	8.15	2.00	0.27	24	23.36	11.40	7.08	41	106.81	93.85	140.51
8	8.60	2.21	0.35	25	25.13	12.72	8.34	42	119.67	108.75	171.99
- 9	9.09	2.44	0.44	26	27.09	14.21	9.84	43	134.58	126.50	211.56
10	9.61	2.69	0.56	27	29.24	15.90	11.60	44	151.95	147.74	261.60
11	10.16	2.98	0.69	28	31.61	17.81	13.70	45	172.28	173.28	325.34
12	10.76	3.29	0.85	29	34.24	19.98	16.18	46	196.22	204.19	407.11
13	11.41	3.63	1.04	30	37.16	22.46	19.13	47	224.55	241.80	512.84
14	12.11	4.02	1.26	31	40.41	25.28	22.65	48	258.28	287.85	650.87
15	12.86	4.45	1.52	32	44.04	28.52	26.87	49	298.71	344.63	831.99
16	13.68	4.92	1.82	33	48.09	32.23	31.94	50	347.50	415.14	1072.80

TABLE 2.1 Terzaghi's Bearing Capacity Factors—Eqs. (2.32), (2.33), and (2.34)

1- TERZAGHI'S BEARING CAPACITY THEORY

 $q_u = 1.3cN_c + qN_q + 0.4\gamma BN_{\gamma}$ (square foundation; plan $B \times B$)

EFFECT OF WATER TABLE

MEYERHOF'S BEARING CAPACITY THEORY

$$q_u = cN_c + qN_q + \frac{1}{2}\gamma BN_{\gamma}$$

where N_c , N_q , and N_{γ} = bearing capacity factors B = width of the foundation

FIGURE 2.7 Slip line fields for a rough continuous foundation

φ	N_c	N_q	N_{γ}	ф	N_c	N_q	Nγ	φ	N_c	N_q	$N_{_{\rm Y}}$
0	5.14	1 00	0.00	17	12.34	4.77	1.66	34	42.16	29.44	31.15
1	5.38	1.09	0.002	18	13.10	5.26	2.00	35	46.12	33.30	37.15
2	5.63	1.20	0.01	19	13.93	5.80	2.40	36	50.59	37.75	44.43
3	5.90	1.31	0.02	20	14.83	6.40	2.87	37	55.63	42.92	53.27
4	6.19	1.43	0.04	21	15.82	7.07	3.42	38	61.35	48.93	64.07
5	6.49	1.57	0.07	22	16.88	7.82	4.07	39	67.87	55.96	77.33
6	6.81	1.72	0.11	23	18.05	8.66	4.82	40	75.31	64.20	93.69
7	7.16	1.88	0.15	24	19.32	9.60	5.72	41	83.86	73.90	113.99
8	7.53	2.06	0.21	25	20.72	10.66	6.77	42	93.71	85.38	139.32
9	7.92	2.25	0.28	26	22.25	11.85	8.00	43	105.11	99.02	171.14
10	8.35	2.47	0.37	27	23.94	13.20	9.46	44	118.37	115.31	211.41
11	8.80	2.71	0.47	28	25.80	14.72	11.19	45	133.88	134.88	262.74
12	9.28	2.97	0.60	29	27.86	16.44	13.24	46	152.10	158.51	328.73
13	9.81	3.26	0.74	30	30.14	18.40	15.67	47	173.64	187.21	414.32
14	10.37	3.59	0.92	31	32.67	20.63	18.56	48	199.26	222.31	526.44
15	10.98	3.94	1.13	32	35.49	23.18	22.02	49	229.93	265.51	674.91
16	11.63	4.34	1.38	33	38.64	26.09	26.17	50	266.89	319.07	873.84

TABLE 2.3 Variation of Meyerhof's Bearing Capacity Factors N_c , N_q , and N_{γ}
[Eqs. (2.66), (2.67), and (2.72)]

2- GENERAL BEARING CAPACITY EQUATION

$$q_{u} = cN_{c}\lambda_{cs}\lambda_{cd} + qN_{q}\lambda_{qs}\lambda_{qd} + \frac{1}{2}\gamma BN_{\gamma}\lambda_{\gamma s}\lambda_{\gamma d}$$

where λ_{cs} , λ_{qs} , $\lambda_{\gamma s}$ = shape factors λ_{cd} , λ_{qd} , $\lambda_{\gamma d}$ = depth factors

FIGURE 2.7 Slip line fields for a rough continuous foundation

Factor	Relationship	Reference			
Shape	For $\phi = 0^\circ$: $\lambda_{cs} = 1 + 0.2 \left(\frac{B}{L}\right)$ $\lambda_{qr} = 1$	Meyerhof [8]			
	$\lambda_{\gamma \gamma} = 1$		Factor	Relationship	Reference
	For $\phi \ge 10^\circ$: $\lambda_{cs} = 1 + 0.2 \left(\frac{B}{L}\right) \tan^2 \left(45 + \frac{\phi}{2}\right)$ $\lambda_{qs} = \lambda_{qs} = 1 + 0.1 \left(\frac{B}{L}\right) \tan^2 \left(45 + \frac{\phi}{2}\right)$			For $D_f / B \le 1$: $\lambda_{cf} = 1 + 0.4 \left(\frac{D_f}{B} \right)$ $\lambda_{cf} = 1 + 2 \tan \phi (1 - \sin \phi)^2 \left(\frac{D_f}{B} \right)$	Hansen [9]
	$\lambda_{q} = 1 + \left(\frac{N_q}{N_c}\right) \left(\frac{B}{L}\right)$ [<i>Note:</i> Use Eq. (2.67) for N_c and Eq. (2.66) for N_q as given in Table 2.3] $\lambda_{qr} = 1 + \left(\frac{B}{L}\right) \tan \phi$	DeBeer [19]		$\lambda_{re} = 1$ For $D_f / B > 1$: $\lambda_{ce} = 1 + 0.4 \tan^{-1} \left(\frac{D_f}{B} \right)$ $\lambda_{re} = 1 + 2 \tan \phi (1 - \sin \phi)^2 \tan^{-1} \left(\frac{D_f}{B} \right)$ $\lambda_{re} = 1$ $\left[\qquad 1 + 2 \tan \phi (1 - \sin \phi)^2 \tan^{-1} \left(\frac{D_f}{B} \right) \right]$	
	$\lambda_{\gamma s} = 1 - 0.4 \left(\frac{B}{L}\right)$			$\begin{bmatrix} \text{Note: } \tan^4 \left(\frac{-\gamma}{B} \right) \text{ is in radians} \end{bmatrix}$	
Depth	For $\phi = 0^{\circ}$: $\lambda_{cd} = 1 + 0.2 \left(\frac{D_f}{B} \right)$ $\lambda_{qd} = \lambda_{qd} = 1$	Meyerhof [8]			
	For $\phi \ge 10^\circ$: $\lambda_{cd} = 1 + 0.2 \left(\frac{D_f}{B} \right) \tan \left(45 + \frac{\phi}{2} \right)$				
	$\lambda_{qd} = \lambda_{qd} = 1 + 0.1 \left(\frac{-\gamma}{B} \right) \tan \left(\frac{45 + \frac{\gamma}{2}}{2} \right)$				
Factor	Relationship	Reference			

ULTIMATE BEARING CAPACITY UNDER INCLINED AND ECCENTRIC LOADS

$$q_{u} = cN_{c}\lambda_{cs}\lambda_{cd}\lambda_{ci} + qN_{q}\lambda_{qs}\lambda_{qd}\lambda_{qi} + \frac{1}{2}\gamma BN_{\gamma}\lambda_{\gamma s}\lambda_{\gamma d}\lambda_{\gamma i}$$

÷.

where N_c , N_q , $N_{\rm y}{\,=\,}$ bearing capacity factors

$$\begin{array}{l} \lambda_{cs}, \, \lambda_{qs}, \, \lambda_{\gamma s} = \text{shape factors} \\ \lambda_{cd}, \, \lambda_{qd}, \, \lambda_{\gamma d} = \text{depth factors} \\ \lambda_{ci}, \, \lambda_{qi}, \, \lambda_{\gamma i} = \text{inclination factors} \end{array}$$

FIGURE 3.1 Plastic zones in soil near a foundation with inclined load

Meyerhof [4] provided the following inclination factor relationships

$$\lambda_{ci} = \lambda_{qi} = \left(1 - \frac{\alpha^{\circ}}{90^{\circ}}\right)^2 \tag{3.14}$$

$$\lambda_{\gamma i} = \left(1 - \frac{\alpha^{\circ}}{\phi^{\circ}}\right)^2 \tag{3.15}$$

Hansen [5] also suggested the following relationships for inclination factors

$$\lambda_{qi} = \left(1 - \frac{0.5Q_{u}\sin\alpha}{Q_{u}\cos\alpha + BLc\cot\phi}\right)^{5}$$
(3.16)

$$\lambda_{ci} = \lambda_{qi} - \left(\frac{1 - \lambda_{qi}}{N_q - 1}\right)$$

$$\uparrow$$
(3.17)

Table 2.3

$$\lambda_{\gamma i} = \left(1 - \frac{0.7Q_u \sin\alpha}{Q_u \cos\alpha + BLc \cot\phi}\right)^5$$
(3.18)

where, in Eqs. (3.14) to (3.18)

 α = inclination of the load on the foundation with the vertical

 Q_u = ultimate load on the foundation = $q_u BL$

- B = width of the foundation
- L =length of the foundation

 A_f = Area of the foundation V = Vertical Load H = Horizontal load c = cohesion