Mechanically Stabilized Earth (MSE) Wall Project

Geotechnical Design CEG 4801 Spring 2017

Kamal Tawfiq, Ph.D., P.E.

Choices for Bridge Abutments

Geotechnical Design CEG 4801 Fall 2010 By: Dr. Kamal Tawfiq

Earth Pressure Behind Retaining Wall

French architect and engineer Henri **Vidal** in the early 1960s

Mechanically Stabilized Earth (MSE) Walls or Segmental Walls

Using Galvanized Steel

Seattle-Tacoma International Airport, WA

Kamal Tawfiq, Ph.D., P.E.

Using Geogrids

Tom Landry Highway, TX

TUL

4

--

Stability of MSE Walls

Stability of MSE Walls

(a) Overturning considerations

(c) Foundation considerations

(b) Sliding considerations

Block Failure

Geotechnical Design CEG 4801 Fall 2004 By: Dr. Kamal Tawfiq

MSE Key Stone Wall

MSE Key Stone Wall

Geotextile Walls

Gabion Walls

ach Gabion Basket is 1'-0" x 1'-0" and come 2'-0" , 3'-0" and 4'-0" Lengths

Gabion Retaining Wall Design

Overall stability limit state

Gabion Walls

HESCO CONCERTAINER

Military Accommodation Roofing, Personnel & Material Bunker Sets

MSE Wall Analysis and Design

A reinforced earth retaining wall is to be <u>30 ft high</u>. The properties of the backfill material are $\gamma = 110 \text{ lb/ft}^3$ and $\phi = 30^\circ$. Galvanized steel ties are to be used for the construction of the wall. Design the Reinforcements with FS_(B) = 3, FS_(p) = 3, f_y = 29,000 psi and $\phi_{\text{tie}} = 20^\circ$. The properties of the in-situ soil below the retaining wall are $\gamma = 120 \text{ lb/ft}^3$, $\phi = 30^\circ$, and c = 150 lb/ft². Design the panels and the ties of the wall.

