Problems

9.1 through 9.5 Refer to Figure 9.19. Calculate σ , u, and σ' at A, B, C, and D for the following cases and plot the variations with depth. (*Note:* e = void ratio, w = moisture content, $G_s = \text{specific gravity of soil solids}$, $\gamma_d = \text{dry unit weight}$, and $\gamma_{\text{sat}} = \text{saturated}$ unit weight.)

Details of soil layer			
Problem	I	II	III
9.1	$H_1 = 5 \text{ ft}$ $\gamma_d = 112 \text{ lb/ft}^3$	$H_2 = 6 \text{ ft}$ $\gamma_{\text{sat}} = 120 \text{ lb/ft}^3$	$H_3 = 8 \text{ ft}$ $\gamma_{\text{sat}} = 125 \text{ lb/ft}^3$
9.2	$H_1 = 5 \text{ ft}$ $\gamma_d = 100 \text{ lb/ft}^3$	$H_2 = 10 \text{ ft}$ $\gamma_{\text{sat}} = 116 \text{ lb/ft}^3$	$H_3 = 9 \text{ ft}$ $\gamma_{\text{sat}} = 122 \text{ lb/ft}^3$
9.3	$H_1 = 3 \text{ m}$ $\gamma_d = 15 \text{ kN/m}^3$	$H_2 = 4 \text{ m}$ $\gamma_{\text{sat}} = 16 \text{ kN/m}^3$	$H_3 = 5 \text{ m}$ $\gamma_{\text{sat}} = 18 \text{ kN/m}^3$
9.4	$H_1 = 4 \text{ m}$ e = 0.4 $G_s = 2.62$	$H_2 = 5 \text{ m}$ e = 0.6 $G_s = 2.68$	$H_3 = 3 \text{ m}$ e = 0.81 $G_s = 2.73$
9.5	$H_1 = 4 \text{ m}$ e = 0.6 $G_s = 2.65$	$H_2 = 3 \text{ m}$ e = 0.52 $G_s = 2.68$	$H_3 = 1.5 \text{ m}$ w = 40% e = 1.1

Figure 9.19

10.14 An earth embankment diagram is shown in Figure 10.39. Determine the stress increase at point *A* due to the embankment load.

Figure 10.39