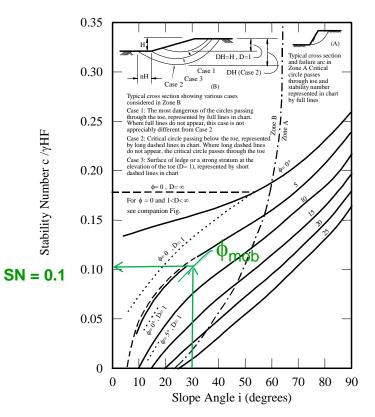
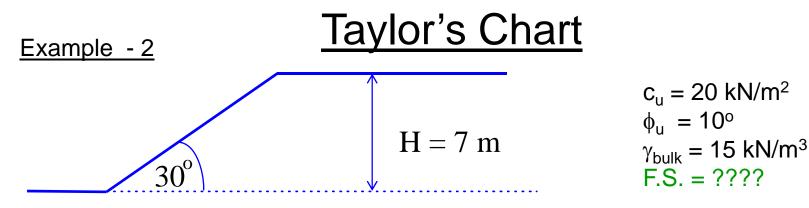

Stability Number

- A variety of charted solutions exist for the simple geometry considered above.
- For the undrained (total stress) analysis of slopes charts produced by Taylor are often used.
- The charts are based on the analysis of circular failure surfaces, and assume that soil strength is given by a Mohr-Coulomb analysis
- Tension cracks are not considered

Stability Number c $/\gamma$ HF



Since the factor of safety is given, then the problem indicates a design of a new slope


Solution:

Use the chart with $i = 30^{\circ}$, and $\phi_{\text{mob}} = \tan^{-1}\left(\frac{\tan 10^{\circ}}{1.5}\right) = 6.7^{\circ}$

SN = 0.1 =
$$\frac{20/1.5}{15 \times H_{design}}$$

H_{design} = $\frac{20/1.5}{15 \times 0.1}$ = 8.88 m

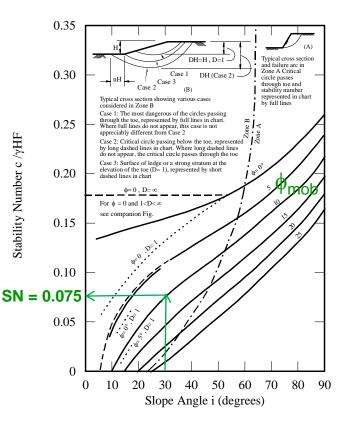
 $\phi_{\text{mobilized}} = \phi_{\text{developed}}$

Since the factor of safety is not given, then the problem indicates an existing slope which we need to analyze it for its stability.

Solution:

<u>Trial # 1</u>

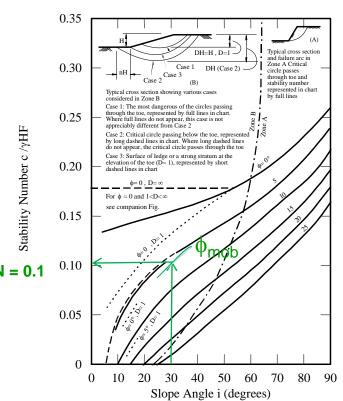
- 1- Assume $FS_{\phi} = 1$
- 2- Use the chart with $i = 30^{\circ}$, and $\phi_{mob} = \tan^{-1}\left(\frac{\tan 10^{\circ}}{1.0}\right) = 10^{\circ}$
- 3- Go to the chart and find SN for $\phi_{mob} = 10^{\circ}$


$$SN = 0.075 = \frac{C_{mob}}{15 \times 7}$$

 $4 - c_{mob} = 15 \times 7 \times 0.075 = 7.87 \text{ kN/m}^2$

5- FSc = $c / c_{mob} = 20/7.87 = 2.5$

Therefore the Assumed FS $\phi \neq$ the calculated FS_c


 $\phi_{\text{mobilized}} = \phi_{\text{developed}}$

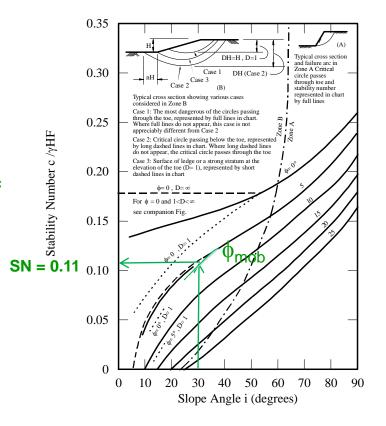
This means the assumed factor of safety was not the right one. So we need to assume another FS ϕ and solve the problem again for FS_c.

Trial # 2
1- Assume FS_{$$\phi$$} = 1.5
2- Use the chart with $i = 30^{\circ}$, and $\phi_{mob} = \tan^{-1}(\frac{\tan 10^{\circ}}{1.5}) = 6.7^{\circ}$
3- Go to the chart and find SN for $\phi_{mob} = 6.7^{\circ}$
SN = 0.1 = $\frac{C_{mob}}{15 \times 7}$
4- $c_{mob} = 15 \times 7 \times 0.10 = 10.5 \text{ kN/m}^2$
5- FSc = c / $c_{mob} = 20/10.5 = 1.9$
Therefore the Assumed FS $\phi \neq$ the calculated FS_c
SN = 0.1

This means the assumed factor of safety was not the right one. So we need to assume another FS ϕ and solve the problem again for FS_c.

<u>Trial # 3</u>

- 1- Assume $FS_{\phi} = 1.8$ —
- 2- Use the chart with $i = 30^{\circ}$, and $\phi_{\text{mob}} = \tan^{-1}\left(\frac{\tan 10^{\circ}}{1.8}\right) = 5.5^{\circ}$
- 3- Go to the chart and find SN for $\phi_{mob} = 5.5^{\circ}$

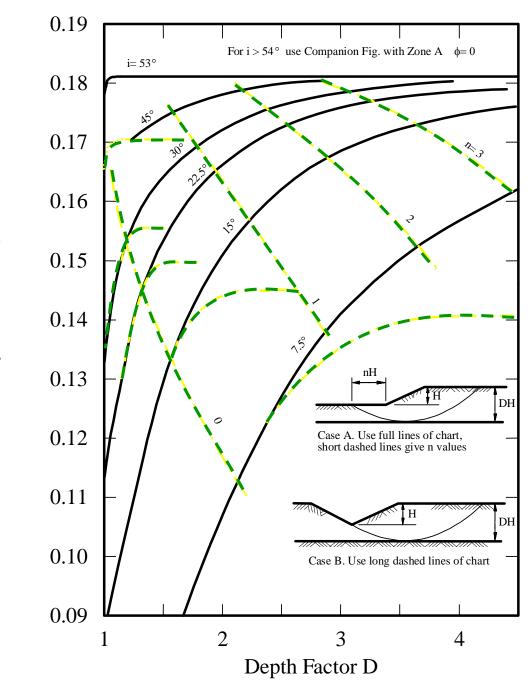

$$SN = 0.11 = \frac{C_{mob}}{15 \times 7}$$

 $4 - c_{mob} = 15 \times 7 \times 0.11 = 11.55 \text{ kN/m}^2$

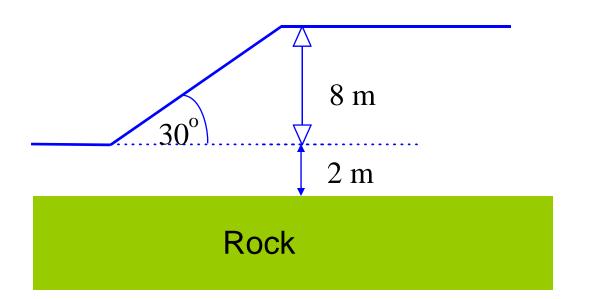
5- FSc =
$$c / c_{mob} = 20/11.55 = 1.73$$

Therefore the Assumed FS $\phi \neq$ the calculated FS_c

This means the assumed factor of safety was not the right one. So we need to assume another FS ϕ and solve the problem again for FS_c.



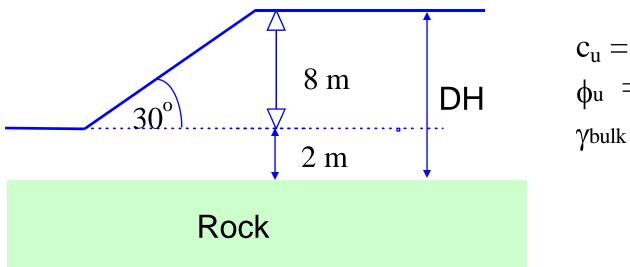
Since we complied three different trials, we are ready to find the right factor of safety by using the 45° line method


Assumed FS ₀	Calculated	I FS _c
1.0 1.5	2.5 1.9	
1.8	1.73	
	3	
So the correct FS is 1.75	2.5	
	2	
	1.75 ≮ 1.5	
	1 -	
	0.5 -	
	0	0.5 1 1.5 1.75 ² 2.5 ³

Taylor's Chart - example

- Zones are marked on the chart indicating whether the failure mode will be shallow or deep-seated.
- If a deep-seated failure is indicated the soil layer must be sufficiently deep to enable this mechanism to occur.
- There is a second chart due to Taylor which can be used when the depth of soil below the base of the slope is limited
- This chart is only valid for $\phi = 0$

Stability Number c $/\gamma HF$

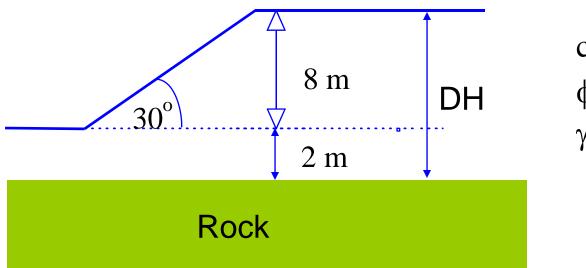


$$c_{u} = 20 \text{ kN/m}^{2}$$

$$\phi_{u} = 0$$

$$\gamma_{bulk} = 15 \text{ kN/m}^{3}$$

Calculate the Depth Factor D



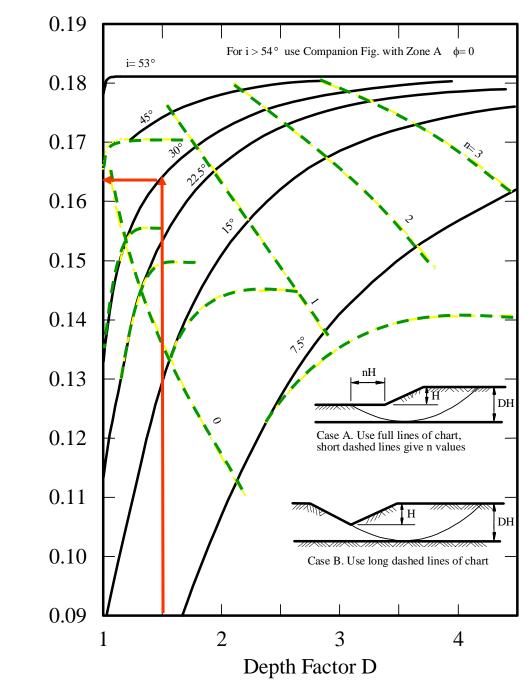
$$c_{u} = 20 \text{ kN/m}^{2}$$

$$\phi_{u} = 0$$

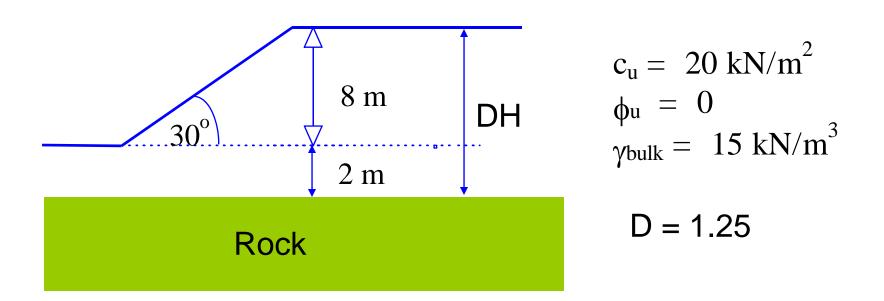
$$\gamma_{bulk} = 15 \text{ kN/m}^{3}$$

Calculate the Depth Factor D DH = 10 m

$$c_{u} = 20 \text{ kN/m}^{2}$$


$$\phi_{u} = 0$$

$$\gamma_{bulk} = 15 \text{ kN/m}^{3}$$


Calculate the Depth Factor D

DH = 10 m, H = 8m

D = 1.25

Stability Number c $/\gamma HF$

$$\frac{C_{dev}}{\gamma H} = \frac{C_{dev}}{15 \text{ x 8}} = 0.165$$

 $C_{dev} = 0.165 \text{ x } 15 \text{ x } 8 = 19.8 \text{ kN/m}^2$ FS = 1.01