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An FPGA based rapid prototyping platform for wavelet 
coprocessors 
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ABSTRACT 

MatLabISimulink-based design flows are being used by DSP designers to improve time-to-market of FPGA im- 
plementations.l Commonly, digital signal processing cores are integrated in an embedded system as coprocessors. 
Existing CAD tools do not fully address the integration of a DSP coprocessor into an embedded system design. 
This integration might prove to be time consuming and error prone. It  also requires that the DSP designer has an 
excellent knowledge of embedded systems and computer architecture details. We present a prototyping platform 
and design flow that allows rapid integration of embedded systems with a wavelet coprocessor. The platform 
comprises of software and hardware modules that allow a DSP designer a painless integration of a coprocessor 
with a PowerPC-based embedded system. The platform has a wide range of applications, from industrial to 
educational environments. 

Keywords: Wavelets, coprocessor, FPGAs 

1. INTRODUCTION 

One of the advantages of FPGA-based embedded systems is their ability to integrate customized user cores 
with a soft or hard embedded processor in system-on-a-chip (SoC) solutions. Improvements in an algorithm's 
execution time are expected when such customized user cores are used as hardware accelerators to calculate 
computationally intensive operations. Wavelets, FFTs, DCT and other transforms are an excellent example of 
operations whose performance can be improved by using hardware accelerators. 

The integration of customized user cores and embedded processors is done by connecting them together via 
a bus. Several options are available to  the designer,* varying with how close the core is t o  the processor, data 
bandwith, bus protocol overhead, etc. IBM Coreconnect bus architecture is a common solution for the integration 
of a processor and peripheral cores on SoC designs. Elements of this architecture include the processor local bus 
(PLB), the on-chip peripheral bus (OPB), a bus bridge, and a device control register (DCR) bus.3 These buses 
offer data width of 32 and 64 bits, as well as a number of services such as direct memory access (DMA) transfers, 
user registers, etc. There are however, several potential drawbacks4 with using this bus architecture. First of all, 
the designer needs to take into consideration the bus protocol during the design phase. This is time consuming 
and error prone. Also, in some instances, the bus protocol overhead is comparatively large as compared to the 
actual execution time. This consumes away any speed advantage gained trough hardware acceleration. Finally, 
this bus connection might be a data bandwith bottleneck for some applications. 

An alternative is the use of a Fast Simplex Link (FSL). This bus is comparatively simpler and provides a uni- 
directional, unshared point-to-point communication channel. FSL provides direct access t o  the PowerPC405's 
Auxiliary Processor Unit (APU) interface. Customized core connected in this way are referred to  as Fabric Co- 
processor modules (FCM). SysGen provides a block set library that includes an FSL interface with a xilinxB's 
softcore processor called Mi~roBlaze.~ However, it does not provide the same interface for a PowerPC405F6 (up 
to SysGen v8.2), which is the hardcore processor included in the Virtex 4 xilinxB's FPGA family. Although 
MicroBlaze has the advantage of being small and portable, PowerPC405 is a better option for intensive com- 
putational applications (PowerPC405 provides 700+ Dhrystone Million Instructions per second (DMIPS) versus 
166 DMIPS of MicroBlaze). 

In this paper, the design of a SysGen blockset for FSL-PowerPC405 interface is described. The main objective 
of such design is t o  abstract away all the computer architecture considerations and cumbersome bus architectural 
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details from the DSP designer. This allows a shorter design time and less error prone design flow. Another 
advantage is that these blocks allow an easy simulation setup from the DSP designer's perspective, allowing him 
or her to take full advantage of the Simulink environment. A quantitative evaluation of the performance of our 
solution is presented and its fitness for wavelet based coprocessors is analyzed. To support future research in 
this area, the proposed platform and results are available ~ n l i n e . ~  

2. DESIGN OF THE FSL INTERFACE 

The FSL bus works basically as a A block diagram of the expected interface is shown in Fig. 1. The 
FIFO allows to stream data in and out, with some flexibility as to the data processing rate (potentially different 
clock rates). Ideally, the depth of the FIFO should be chosen such that it matches the length of a data vector. 
When resources do not permit so, a compromise between area and processing speed should be made. The bus 
protocol is straight forward, and involves few signals as shown in Fig. 3. For details please refer to the FSL 
datasheet .7 

j Marter 
..... 

I 
i 
I User 

i PPC405 i customized 

Figure 1. Simple FSL interface block diagram 
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Figure 2. Block that a DSP designer will have to deal 
with. It only has 2 inputs and 3 outputs, greatly simplify- 
ing the modeling of the FSL bus interface. 
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Figure 3. Internals of the block in Fig. 2. The block is basically built upon finite state machines to control the signals 
for reading and writing to and from the FSL bus. 
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Table 1. Summary of resource consumption and performance results for the FSL interface. Note that the frequency of 
operation is a parameter that will limit bus speed. The frequency of operation shown in this table only addresses the 
interface logic, not the user core logic. Also, note that there is an extra cost associated with the processor side of the bus 
(if the FIFO is deeper, that side needs more resources) that is not present in this table. The percentage values refer to  a 
mid size Virtex 4 device (V4FX12LC). 

Bitwidth LUTs Flip Flops Occupied slices Min. clk period 
8 14 (1%) 10 (1%) 8 (1%) 3.82 ns 
16 22 (1%) 18 (1%) 12 (1%) 2.87 ns 
32 38 (1%) 34 (1%) 20 (1%) 3.92 ns 

The SysGen implementation is shown in Fig. 3. Parameters of FIFO's depth and word width shown in Fig. 
1 are left to be customized by the user. The bus protocol signals are abstracted and simplified to two signals per 
channel: a data bus and a data valid signal. The bus protocol is handled by two state machines (Fig. 3), one for 
reading data from the host processor and the other to write the processed data back to the host processor. Also, 
a set of Matlab scripts were written to create the input vectors to simulate FSL's interface behavior. Simulation 
of the interface is discussed in section 4.2. A simulation example is shown in Fig. 15. Table 1 shows a summary 
of the resource consumption and performance results for the interface implemented using different parameters. 

3. A WAVELET COPROCESSOR 
Wavelets provide us with an indispensable tool for analysis and signal processing with a broad number of 
applications. In Fig. 4.a we show a one-dimensional wavelet tree. The recurrent operation in a Direct Wavelet 
Transform (DWT) is the filtering and decimation of the signal to obtain the approximation (cA) and detail (cD) 
coefficients as shown in Fig. 4 diagram. 

one DWT stage 

Figure 4. (a) shows a one-dimensional wavelet decomposition tree. The wavelet decomposition of a signal S at level j 
has the structure [cAj, cDj, .  . . .  c D ~ ] .  (b) shows shows the block diagram of one stage of the tree. 

A direct realization of the building blocks shown in Fig. 4.b requires the system to run at the input data rate. 
This requirement can be relaxed by taking advantage of the polyphase representation of the analysis and synthesis 
 filter^,^ as shown in Fig. 5. To derive the structure shown in Fig. 5, note that the filtering stages consist of 
the convolution of the samples vector X = [xo, XI, . . . ,  XM- 11 and the coefficients vector H = [ho, hl . . . . .  hN- 11, 
where the output is given by Y(i) = zgil x(i - j )h(j) .  After decimation this equation becomes 
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Figure 5. Wavelet's filter polyphase representation. 

Thus, the incoming samples can be separated into two flows of even and odd samples, and both be processed 
simultaneously by two different entities of weights of even and odd positions respectively. 

xilinxB's SysGen is used to design a DWT core attached as a coprocessor to the FSL interface described 
in section 2. The DWT has a fairly straight forward implementation, provide that the general structure of the 
filter blocks is designed, requiring relatively simple logic for control. The implementation of a 1D DWT is shown 
in Fig. 6 at a high level. Besides the FSL interface block, and the DWT core, a multiplexer is needed to put 
together the approximation and detail coefficients in a single stream at the input data rate. Additional delay 
units are used to synchronize control signals in the pipeline. More complex architectures allow for a feedback 
path to implement multiple stage decomposition trees. Figure 7 shows a 2D DWT architecture that allows 
for the approximation coefficients to be fed back into the DWT core. This strategy is preferred to a direct 
implementation of sequential DWT cores put together (due to resources constraints). The architecture provides 
a single decomposition stage and it includes a storage stage in the feedback path, as well as control logic and 
an address generator. This extra control logic allows for storing of the first approkimation coefficients resulting 
with a row-ordered input, and fed back to the DWT core in a column-ordered fashion. 

System 
Generator 

+ data2ppc 

+ data2ppc-en 
Resource 
Estimator 

I 
daa2ppc-en 

WaveScope 

Figure 6. Sysgen's 1D DWT model. 
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Figure 7. Sysgen's 2D DWT model. 
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Figure 8. Hardware co-simulation results for a ID single Figure 9. Hardware co-simulation results for a 2D single 
stage DWT. stage DWT. 

As the most fundamental block of all the architectures just described is the filterldecimation core, several 
implementations are shown in Figs. 10, 12, 11 and 13 were tested. Figure 10 show a structure where the 
filters could be implemented either using a distributed arithmetic finite-impulse response (FIR) filter, or a 
multiply-accumulator (MAC) based FIR filter. The Sysgen's library blocks DAFIR v9-0 and FIR Compiler v2-0 
respectively, were used. Both have similar latency for the Daubechies wavelet family (restricted to a maximum 
of 10 coefficients. Note that in case of the FIR Compiler v2-0 (MAC-based) block has a limitation of max. 25 
bits per coefficient. This number of bits is sufficient for most cases. This block is built using DSP48 blocks and 
is only available for Virtex 4 and Virtex 5 devices. 
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Figure 10. Structure used to implement a DWT core with DA and MAC based decimator/filters. 
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Figure 11. High level block structure of the decimatorlfilter for DWT build upon simpler basic blocks. The inner 
structure in the filter blocks had two different implementation shown in Fig. 13 and 12. 

Figure 12. Structure of decimatorlfilter using embedded multipliers blocks and time multiplexion to reduce resource 
consumption. 

Figure 13. Structure of decimatorlfilter using constant multipliers blocks. In this case, the multipliers can be implemented 
using Distributed RAM (DRAM) or Block RAM (BRAM). 
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These filters are available as high level blocks in the Sysgen library. Although these blocks are optimized 
for xilinxB devices, their generality and flexibility adds complexity that results in higher resource consumption. 
Two other structures were tested (Fig.s 13 and 12) that use lower level Sysgen blocks. In both cases a transpose 
FIR filter structure was implemented. Figure 13 is an straight forward implementation, using Sysgen blocks 
that multiply a sample with a constant value. These multipliers can be implemented either in BRAM blocks or 
distributed memory. Figure 12 implements the multipliers using the embedded multipliers in the DSP blocks 
(Virtex4 and Virtex5 devices). In this case the multipliers are multiplexed in time in order to  save resources. 

The size of the input vector, word length, fixed-point representation and coefficients for different wavelet 
families are left as parameterizable variables. The results of different combinations of these values and the 
structures described above, are shown in Table 2. 

For comparison, a software based DWT was implemented using a floating point unit (FPU)' available for 
the PowerPC405FX6 processor. The C code for the DWT was written with only the basic optimization consid- 
erations. The results for a single stage DWT with a 64 word vector length, are shown in Table 3. Performance 
improvement is evident. Also note that  the FPU uses a considerable amount of resources (1100 slices and 2 
BRAMs for a lite version without square root and division functions), and that it operates at single precision 
floating point format. I t  is interesting t o  note that although DWT cores implementing DB2 or Haar families 
weren't tested, a difference in the number of clock cycles to process a 64 word vector is not expected. This is due 
to the fact that the latency of the DWT core will not be significant when compared with the number of clock 
cycles needed to  write and read the data through the FSL bus. Thus, the performance improvement becomes 
more significant as the number of taps in the DWT filters increases. Also, alternatives ways t o  reduce even more 
the FSL bus overhead are possible. 

Table 2. Summary of resource consumption and performance results for a single step DWT (Fig. 5 calculation module 
using different filter structures and Sysgen's library blocks. For comparison, a mid size Virtex 4 device (V4FX12LC) has 
5472 slices, 36 BRAM blocks and 32 XtremeDSP slices. In all cases, the DWT core implements the DB4 wavelet (8 taps 
filters) family. The format column refers to data in and out, and filter coefficients. The design does not use guard bits. 

Wavelet Core Coprocessor 

4. DESIGN FLOW FOR RAPID INTEGRATION AND PROTOTYPING 

Filter 
Distributed 
Arithmetic 

Multiply- 
Accumulator 

Constant 
Multiplier 

using BRAM 
Constant 
Multiplier 

using D-RAM 
Embedded 
Multipliers 

Rapid integration was accomplished due to  two key factors: a customized design flow and a simulation and 
validation environment for the bus interface (as described in section 2). The process described below is based 
on a proof of concept through the integration of a DWT core and a PowerPC405 embedded system. 
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Format 
FIX-8-6 

FIX-16-14 
FIX-32-30 
FIX-8-6 

FIX-16-14 
FIX-18-16 
FIX-8-6 

FIX-1 6-14 
FIX-32-30 
FIX-8-6 

FIX-16-14 
FIX-32-30 
FIX-8-6 

FIX-16-14 
FIX-32-30 

Slices 
444 
1430 
4904 
160 
240 
257 
123 
319 
1212 
183 
783 

4837 
88 
164 
342 

BRAMs 
0 
0 
0 
0 
0 
0 
13 
32 
60 
0 
0 
0 
0 
0 
0 

FFs 
809 

2705 
9617 
232 
379 
411 
166 
301 
589 
157 
301 
589 
118 
214 
438 

LUTS 
49 1 
2037 
8309 
111 
175 
189 
155 
499 
2078 
296 
1404 
6665 
144 
280 
574 

Latency 
4 
5 
5 
4 
4 
4 
5 
5 
5 
4 
4 
4 
5 
5 
5 

Emb. Mutls 
0 
0 
0 
10 
10 
10 
0 
0 
0 
0 
0 
0 
8 
8 

32 

Frequency (MHz) 
196.54 
218.57 
163.71 
242.89 
214.31 
254.71 
196.3 

113.66 
100 

136.91 
101.27 
59.78 
132.06 
149.16 
72.63 



Table 3. Number of clock periods required for an embedded PowerPC405 system using a FPU coprocessor to calculate 
the DWT of a 64-bit word input vector, single floating point precision, DWT. In both cases the core runs at the FSL bus 
speed: lOOMHz and the PowerPC runs at 200 MHz. 

4.1. Design flow 

FPU implementation vs. DWT core 

Rapid integration is accomplished by using a series of templates to skip some of the steps of a regular flow. 
Following the schema shown in Fig. 14, the first step is to complete the DSP design and simulation successfully 
in the Sysgen/Simulink environment. The block libraries described in sections 2 and 3 as well as the Matalb 
scripts described in the next subsection are used to accomplish this goal. After completing this step, the usual 
Sysgen design flow is followed through a NGC Netlist compilation (refer to Sysgen's user manuallo for details). 
The process will output two netlist files, x1persistentdff.ngc and my-core-name-cw.ngc. Both files are copied 
in an slightly customized user core repository directory. Minor modifications on configuration files are needed 
to match the name of the user core with the name of the files being copied. A sample directory is provided 
online with the rest of the models used to obtain the results in this paper. After completing this step, the usual 
~ i l inx@'s  design flow for embedded systems1' is followed. During this process, the newly created coprocessor 
will be available in the tools libraries, and its integration will be straight forward. 

Develop algorithm 8 system model 

Use FSL block libraw for interlace 

DWT core num. of clock cycles 
- 
- 

4246 

Wavelet family 
Haar 
db2 
db4 

Simulation with FSL interface model 

Verification: hardware co-simulation 

' FPU, num. of clock periods 
2511 
4216 
7151 

Automatic netlist generation I 

my-core-name-cw.ngc 
xlpersistentdff .ngc 

. . ... . . .- .. . -- - -. . . . . . 

w.m-.*-LO.d 

Modify the .bW file in h is  
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01 the new .ngc files I Modify custom ( 
Add .ngc liles 

in mis direacry 
IP repository 1 

directory 

Validationldebug: Chipscope 
EDK's Design 

Flow 

Figure 14. Design flow. 

4.2. Bus interface simulation and validation 

The compliance with the simplified protocol can be verified by simulation in the same environment where the 
DSP system was designed. The most important feature to verify with respect to the integration is that the valid 
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data signal produced by the core is synchronized. This will assure that the FSL FIFO reads in the right values. 
Note that in a basic environment, read and write to and from the FSL bus are blocking operations. Also, note 
that if the latency of the core is such that a read operation is performed before data is available, the processor 
will stall and wait until data is available. As long as the latency of the core is kept under the bus protocol 
overhead, this issue will not arise. A simulation example of a model integrating the DWT core in section 3 and 
the interface in section 2 is shown in Fig. 15. 

Figure 15. Simulation example in the Sysgen's environment (Simulink). 

Figure 16. Bus interface validation using Chipscope 8.2. 

Besides the graphical output of the simulation, Matlab scripts were used to process the output vector as the 
receiver's FIFO in a FSL bus would do. Thus, any post-processing operations on the resulting vector of data can 
be simulated in the Matlab environment to obtain a graphical representation of the system's output. Examples 
were shown in Fig. 8 and 9. 

xilinxB's Chipscope tool12 was used as a validation tool once the embedded system was running in a devel- 
opment board. Figure 16 shows the signals in the FSL interface when a writing operation is performed. It is 
also possible to visualize core's internal signals in case needed. 

5. CONCLUSIONS 

In this paper, a design flow is provided for the rapid design, simulation and integration of a DSP core (im- 
plemented using xilinxB's Sysgen tool) into a PowerPC embedded system. A model for a FSL interface was 
developed to simplify such integration from a DSP designer's point of view. As a proof of concept, a coprocessor 
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for 1D DWT computation was tested and compared against a FPLT-based implementation. Also, different DWT 
core implementations are shown and compared in terms of area and frequency of operation. 

Ongoing work is focused on exploring different integration alternatives not provided yet by commercial tools. 
The main goal of future work is the creation of a reference FPGA-DSP research architecture platform. The 
means to acquire, process and render ID and 2D signals will be included, such as to  provide the designer with 
tools to rapidly test and implement FPGA-based signal processing systems. With such functionality in place, the 
designer could focus exclusively in the part of the signal processing system of interest (acquisition, preprocessing, 
etc), allowing for a faster development cycle. This is of special interest in an educational environment, where a 
lab instructor could focus the student's interest in a component of a DSP system at a time while having a t  hand 
the remaining components in generic versions for testing and implementation. Additional effort are oriented to 
explore the extensibility of this work to different hardware providers. 
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