
101 Innovation Drive
San Jose, CA 95134
www.altera.com

FFT MegaCore Function
User Guide

MegaCore Version: 9.1
Document Date: November 2009

http://www.altera.com

Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.

UG-FFT-9.1

 © November 2009 Altera Corporation
Contents
Chapter 1. About This MegaCore Function
Release Information . 1–1
Device Family Support . 1–1
Features . 1–2
General Description . 1–3

Fixed Transform Size Architecture . 1–3
Variable Streaming Architecture . 1–3

MegaCore Verification . 1–3
Performance and Resource Utilization . 1–4

Cyclone III Devices . 1–4
Stratix III Devices . 1–7
Stratix IV Devices . 1–11

Installation and Licensing . 1–14
OpenCore Plus Evaluation . 1–14
OpenCore Plus Time-Out Behavior . 1–15

Chapter 2. Getting Started
Design Flows . 2–1
DSP Builder Flow . 2–1
MegaWizard Plug-In Manager Flow . 2–2

Parameterize the MegaCore Function . 2–3
Set Up Simulation . 2–7
Generate the MegaCore Function . 2–8

Simulate the Design . 2–10
Simulate in the MATLAB Software . 2–10

Fixed Transform Architectures . 2–10
Variable Streaming Architecture . 2–11

Simulate with IP Functional Simulation Models . 2–12
Simulating in Third-Party Simulation Tools Using NativeLink . 2–12

Compile the Design . 2–13
Fixed Transform Architecture . 2–13
Variable Streaming Architecture . 2–14

Program a Device . 2–14

Chapter 3. Functional Description
Buffered, Burst, & Streaming Architectures . 3–1
Variable Streaming Architecture . 3–2
The Avalon Streaming Interface . 3–3
FFT Processor Engine Architectures . 3–4

Radix-22 Single Delay Feedback Architecture . 3–4
Quad-Output FFT Engine Architecture . 3–5
Single-Output FFT Engine Architecture . 3–5
FFT MegaCore Function User Guide

iv
I/O Data Flow Architectures . 3–6
Streaming . 3–6

Streaming FFT Operation . 3–6
Enabling the Streaming FFT . 3–8

Variable Streaming . 3–8
Change the Block Size . 3–8
Enabling the Variable Streaming FFT . 3–9
Dynamically Changing the FFT Size . 3–9
The Effect of I/O Order . 3–10

Buffered Burst . 3–10
Burst . 3–12

Parameters . 3–13
Signals . 3–15

Appendix A. Block Floating Point Scaling
Introduction . A–1
Block Floating Point . A–1
Calculating Possible Exponent Values . A–2
Implementing Scaling . A–2
Achieving Unity Gain in an IFFT+FFT Pair . A–4

Additional Information
Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2
FFT MegaCore Function User Guide © November 2009 Altera Corporation

© November 2009 Altera Corporation
1. About This MegaCore Function
Release Information
Table 1–1 provides information about this release of the Altera® FFT MegaCore®
function.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the
previous version of each MegaCore® function. The MegaCore IP Library Release Notes
and Errata report any exceptions to this verification. Altera does not verify
compilation with MegaCore function versions older than one release.

Device Family Support
MegaCore functions provide either full or preliminary support for target Altera
device families:

■ Full support means the MegaCore function meets all functional and timing
requirements for the device family and may be used in production designs

■ Preliminary support means the MegaCore function meets all functional
requirements, but may still be undergoing timing analysis for the device family; it
may be used in production designs with caution.

Table 1–2 shows the level of support offered by the FFT MegaCore function to each of
the Altera device families.

Table 1–1. Product Name Release Information

Item Description

Version 9.1

Release Date November 2009

Ordering Code IP-FFT

Product ID 0034

Vendor ID 6AF7

Table 1–2. Device Family Support (Part 1 of 2)

Device Family Support

Arria™ GX Full

Arria II GX Preliminary

Cyclone® Full

Cyclone II Full

Cyclone III Full

Cyclone III LS Preliminary
FFT MegaCore Function User Guide

www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf
www.altera.com/literature/rn/rn_ip.pdf

1–2 Chapter 1: About This MegaCore Function
Features
Features
■ Bit-accurate MATLAB models

■ Enhanced variable streaming FFT:

■ Single precision floating point or fixed point representation

■ Input and output orders include natural order, bit reversed, and DC-centered
(–N/2 to N/2)

■ Reduced memory requirements

■ Support for 8 to 32-bit data and twiddle width

■ Radix-4 and mixed radix-4/2 implementations

■ Block floating-point architecture—maintains the maximum dynamic range of data
during processing (not for variable streaming)

■ Uses embedded memory

■ Maximum system clock frequency >300 MHz

■ Optimized to use Stratix series DSP blocks and TriMatrix™ memory
architecture

■ High throughput quad-output radix 4 FFT engine

■ Support for multiple single-output and quad-output engines in parallel

■ Multiple I/O data flow modes: streaming, buffered burst, and burst

■ Avalon® Streaming (Avalon-ST) compliant input and output interfaces

■ Parameterization-specific VHDL and Verilog HDL testbench generation

■ Transform direction (FFT/IFFT) specifiable on a per-block basis

■ Easy-to-use IP Toolbench interface

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

Cyclone IV Preliminary

HardCopy® II Full

HardCopy III Preliminary

HardCopy IV E Preliminary

HardCopy IV GX Preliminary

Stratix® Full

Stratix II Full

Stratix II GX Full

Stratix III Full

Stratix IV Preliminary

Stratix GX Full

Table 1–2. Device Family Support (Part 2 of 2)

Device Family Support
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 1: About This MegaCore Function 1–3
General Description
■ DSP Builder ready

f For information about Avalon-ST interfaces, refer to the Avalon Interface Specifications.

General Description
The FFT MegaCore function is a high performance, highly-parameterizable Fast
Fourier transform (FFT) processor. The FFT MegaCore function implements a
complex FFT or inverse FFT (IFFT) for high-performance applications.

The FFT MegaCore function implements the following architectures:

■ Fixed transform size architecture

■ Variable streaming architecture

Fixed Transform Size Architecture
The fixed transform architecture FFT implements a radix-2/4 decimation-in-
frequency (DIF) FFT fixed-transform size algorithm for transform lengths of 2m where
6 m 14. This architecture uses block-floating point representations to achieve the
best trade-off between maximum signal-to-noise ratio (SNR) and minimum size
requirements.

The fixed transform architecture accepts as an input a two’s complement format
complex data vector of length N, where N is the desired transform length in natural
order; the function outputs the transform-domain complex vector in natural order. An
accumulated block exponent is output to indicate any data scaling that has occurred
during the transform to maintain precision and maximize the internal signal-to-noise
ratio. Transform direction is specifiable on a per-block basis via an input port.

Variable Streaming Architecture
The variable streaming architecture FFT implements a radix-22 single delay feedback
architecture, which you can configure during runtime to perform FFT algorithm for
transform lengths of 2m where 4 m 16. This architecture uses either a fixed-point
representation or a single precision floating point representation.

The fixed-point representation grows the data widths naturally from input through to
output thereby maintaining a high SNR at the output. The single precision floating
point representation allows a large dynamic range of values to be represented while
maintaining a high SNR at the output.

f For more information about radix-22 single delay feedback architecture, refer to S. He
and M. Torkelson, A New Approach to Pipeline FFT Processor, Department of Applied
Electronics, Lund University, IPPS 1996.

The order of the input data vector of size N can be natural, bit reversed, or –N/2 to
N/2 (DC-centered). The architecture outputs the transform-domain complex vector in
natural or bit-reversed order. The transform direction is specifiable on a per-block
basis using an input port.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1–4 Chapter 1: About This MegaCore Function
MegaCore Verification
MegaCore Verification
Before releasing a version of the FFT MegaCore function, Altera runs comprehensive
regression tests to verify its quality and correctness.

Custom variations of the FFT MegaCore function are generated to exercise its various
parameter options, and the resulting simulation models are thoroughly simulated
with the results verified against master simulation models.

Performance and Resource Utilization
Performance varies depending on the FFT engine architecture and I/O data flow. All
data represents the geometric mean of a three seed Quartus II synthesis sweep.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers;
Stratix III devices use combinational adaptive look-up tables (ALUTs) and logic
registers.

Cyclone III Devices
Table 1–3 shows the streaming data flow performance, using the 4 multipliers / 2
adders complex multiplier structure, for width 16, for Cyclone III (EP3C10F256C6)
devices.

Table 1–4 shows the variable streaming data flow performance, with in order inputs
and bit-reversed outputs, for width 16 (32 for floating point), for Cyclone III
(EP3C16F484C6) devices.

1 The variable streaming with fixed-point number representation uses natural word
growth, therefore the multiplier requirement is larger compared with the equivalent
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–3. Performance with the Streaming Data Flow Engine Architecture—Cyclone III Devices

Points
Combinational

LUTs
Logic

Registers
Memory

(Bits)
Memory
(M9K)

9 × 9
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

256 3,425 3,880 39,168 20 24 236 256 1.08

1,024 3,837 4,575 155,904 20 24 237 1,024 4.33

4,096 (1) 5,941 6,313 622,848 76 48 232 4,096 17.68

Note to Table 1–3:

(1) EP3C40F780C6 device.

Table 1–4. Performance with the Variable Streaming Data Flow Engine Architecture—Cyclone III Devices

Point Type Points
Combinational

LUTs
Logic

Registers
Memory

(Bits)
Memory
(M9K)

9 × 9
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

Fixed 256 3,976 4,173 10,309 17 48 190 256 1.35

Fixed 1,024 5,392 5,549 42,605 24 64 181 1,024 5.66
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 1: About This MegaCore Function 1–5
Performance and Resource Utilization
Table 1–5 lists resource usage with buffered burst data flow architecture, using the 4
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for
Cyclone III (EP3C25F324C6) devices.

Table 1–6 lists performance with buffered burst data flow architecture, using the 4
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for
Cyclone III (EP3C25F324C6) devices.

Fixed 4,096 6,865 6,873 172,006 46 80 176 4,096 23.22

Floating (1) 256 27,323 19,619 22,132 66 96 113 256 2.27

Floating (2) 1,024 34,508 24,436 80,912 89 128 114 1,024 8.99

Floating (2) 4,096 41,774 29,294 311,724 135 160 113 4,096 36.38

Note to Table 1–4:

(1) EP3C40F780C6 device.
(2) EP3C55F780C6 device.

Table 1–4. Performance with the Variable Streaming Data Flow Engine Architecture—Cyclone III Devices

Point Type Points
Combinational

LUTs
Logic

Registers
Memory

(Bits)
Memory
(M9K)

9 × 9
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

Table 1–5. Resource Usage with Buffered Burst Data Flow Architecture—Cyclone III Devices

Points
Number of
Engines (1)

Combinational
LUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

9 × 9
Blocks

fMAX

(MHz)

256 (2) 1 3,118 3,738 30,976 16 24 254

1,024 (2) 1 3,208 3,930 123,136 16 24 238

4,096 1 3,287 4,108 491,776 60 24 234

256 (3) 2 5,114 5,892 30,976 31 48 244

1,024 (3) 2 4,207 5,023 175,392 20 24 220

4,096 2 5,299 6,280 491,776 60 48 231

256 4 8,904 10,620 30,976 60 96 215

1,024 4 9,030 10,839 123,136 60 96 206

4,096 4 9,144 11,039 491,776 60 96 207

Notes to Table 1–5:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT MegaWizard interface.
(2) EP3C10F256C6 device.
(3) EP3C16F484C6 device.

Table 1–6. Performance with the Buffered Burst Data Flow Architecture—Cyclone III Devices (Part 1 of 2)

Points
Number of
Engines (1)

fMAX
(MHz)

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 (4) 1 254 235 0.93 491 1.93 331 1.30

1,024 (4) 1 238 1,069 4.49 2,093 8.8 1,291 5.43

4,096 1 234 5,167 22.04 9,263 39.51 6157 26.26

256 (5) 2 244 162 0.66 397 1.63 299 1.23
© November 2009 Altera Corporation FFT MegaCore Function User Guide

1–6 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–7 lists resource usage with burst data flow architecture, using the 4 multipliers
/2 adders complex multiplier structure, for data and twiddle width 16, for Cyclone III
(EP3C10F256C6) devices.

1,024 (5) 2 220 557 2.53 1,581 7.18 1,163 5.28

4,096 2 231 2,607 11.28 6,703 29.01 5,133 22.22

256 4 215 118 0.55 347 1.61 283 1.32

1,024 4 206 340 1.65 1,364 6.61 1,099 5.33

4,096 4 207 1,378 6.64 5,474 26.38 4,633 22.33

Notes to Table 1–6:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT MegaWizard interface. You may
choose from one, two, or four quad-output engines in parallel.

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.
(4) EP3C10F256C6 device.
(5) EP3C16F484C6 device.

Table 1–6. Performance with the Buffered Burst Data Flow Architecture—Cyclone III Devices (Part 2 of 2)

Points
Number of
Engines (1)

fMAX
(MHz)

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Table 1–7. Resource Usage with the Burst Data Flow Architecture—Cyclone III Devices

Points
Engine

Architecture
Number of
Engines (2)

Combinational
LUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

9 × 9
Blocks

256 Quad Output 1 3,110 3,672 14,592 8 24

1,024 Quad Output 1 4,207 5,023 175,392 20 24

4,096 Quad Output 1 3,278 4,022 229,632 28 24

256 Quad Output 2 5,093 5,824 14,592 15 48

1,024 Quad Output 2 5,189 6,016 57,600 15 48

4,096 Quad Output 2 5,270 6,192 229,632 28 48

256 Quad Output 4 8,906 10,556 14,592 28 96

1,024 Quad Output 4 9,017 10,765 57,600 28 96

4,096 Quad Output 4 9,128 10,955 229,632 28 96

256 Single Output 1 1,465 1,495 9,472 3 8

1,024 Single Output 1 1,528 1,541 37,120 6 8

4,096 Single Output 1 1,620 1,587 147,712 19 8

256 Single Output 2 2,079 2,406 14,592 9 16

1,024 Single Output 2 2,131 2,482 57,600 11 16

4,096 Single Output 2 2,194 2,558 229,632 28 16

Notes to Table 1–7:

(1) When using the burst data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from
one to two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 1: About This MegaCore Function 1–7
Performance and Resource Utilization
Table 1–8 lists performance with burst data flow architecture, using the 4 multipliers
/2 adders complex multiplier structure, for data and twiddle width 16, for Cyclone III
(EP3C10F256C6) devices.

Stratix III Devices
Table 1–9 shows the streaming data flow performance, using the 4 multipliers /2
adders complex multiplier structure, for data and twiddle width 16, for Stratix III
(EP3SE50F780C2) devices.

Table 1–10 shows the variable streaming data flow performance, with in order inputs
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix III
(EP3SE50F780C2) devices.

Table 1–8. Performance with the Burst Data Flow Architecture—Cyclone III Devices

Points
Engine

Architecture
Number of
Engines (1)

fMAX
(MHz)

Transform
Calculation Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 243 235 0.97 491 2.02 331 1.36

1,024 Quad Output 1 233 1,069 4.59 2,093 8.98 1,291 5.54

4,096 Quad Output 1 235 5,167 21.97 9,263 39.39 6,157 26.18

256 Quad Output 2 232 162 0.70 397 1.71 299 1.29

1,024 Quad Output 2 221 557 2.52 1,581 7.14 1,163 5.25

4,096 Quad Output 2 234 2,607 11.13 6,703 28.61 5,133 21.91

256 Quad Output 4 223 118 0.53 374 1.68 283 1.27

1,024 Quad Output 4 214 340 1.59 1,364 6.36 1,099 5.12

4,096 Quad Output 4 210 1,378 6.55 5,474 26.01 4,633 22.02

256 Single Output 1 261 1,115 4.28 1,371 5.26 1,628 6.25

1,024 Single Output 1 237 5,230 22.02 6,344 26.72 7,279 30.65

4,096 Single Output 1 236 24,705 104.62 28,801 121.97 32,898 139.32

256 Single Output 2 246 585 2.38 841 3.42 1,098 4.47

1,024 Single Output 2 240 2,652 11.03 3,676 15.29 4,701 19.55

4,096 Single Output 2 241 12,329 51.18 16,495 68.47 20,605 85.53

Notes to Table 1–8:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from one to
two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output.
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–9. Performance with the Streaming Data Flow Engine Architecture—Stratix III Devices

Points
Combinational

ALUTs
Logic

Registers
Memory

(Bits)
Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

256 2,141 3,688 39,168 20 12 397 256 0.64

1,024 2,434 4,383 155,904 20 12 406 1,024 2.52

4,096 3,732 5,929 622,848 76 24 361 4,096 11.35
© November 2009 Altera Corporation FFT MegaCore Function User Guide

1–8 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
1 The variable streaming with fixed-point number representation uses natural word
growth, therefore the multiplier requirement is larger compared with the equivalent
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–11 lists resource usage with buffered burst data flow architecture, using the 4
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for
Stratix III (EP3SE50F780C2) devices.

Table 1–10. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix III Devices

Point Type Points
Combinational

ALUTs
Logic

Registers
Memory

(Bits)
Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

Fixed 256 2,539 3,910 10,193 14 24 335 256 0.76

Fixed 1,024 3,513 5,231 42,377 21 32 333 1,024 3.08

Fixed 4096 4,540 6,545 171,611 40 40 304 4,096 13.46

Floating 256 17,724 19,941 24,959 66 48 215 256 1.19

Floating 1,024 22,342 24,758 84,798 87 64 214 1,024 4.78

Floating (1) 4,096 27,325 29,709 316,579 136 80 214 4,096 19.12

Note to Table 1–10:

(1) EP3SL70F780C2 device.

Table 1–11. Resource Usage with Buffered Burst Data Flow Architecture—Stratix III Devices

Points
Number of
Engines (1)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX

(MHz)

256 1 1,996 3,546 30,976 16 12 406

1,024 1 2,040 3,738 123,136 16 12 404

4,096 1 2,082 3,917 491,776 60 12 392

256 2 3,345 5,508 30,976 31 24 378

1,024 2 3,383 5,711 123,136 31 24 379

4,096 2 3,425 5,896 491,776 60 24 380

256 4 5,871 9,854 30,976 60 48 347

1,024 4 5,935 10,071 123,136 60 48 340

4,096 4 6,009 10,271 491,776 60 48 325

Notes to Table 1–11:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT MegaWizard interface.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 1: About This MegaCore Function 1–9
Performance and Resource Utilization
Table 1–12 lists performance with buffered burst data flow architecture, using the 4
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for
Stratix III (EP3SE50F780C2) devices.

Table 1–13 lists resource usage with burst data flow architecture, using the 4
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for
Stratix III (EP3SE50F780C2) devices.

Table 1–12. Performance with the Buffered Burst Data Flow Architecture—Stratix III Devices

Points
Number of
Engines (1) fMAX (MHz)

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 406 235 0.58 491 1.21 331 0.81

1,024 1 404 1,069 2.64 2,093 5.17 1,291 3.19

4,096 1 392 5,167 13.19 9,263 23.65 6157 15.72

256 2 378 162 0.43 397 1.05 299 0.79

1,024 2 379 557 1.47 1,581 4.17 1,163 3.07

4,096 2 380 2,607 6.86 6,703 17.64 5,133 13.51

256 4 347 118 0.34 347 1.00 283 0.82

1,024 4 340 340 1.00 1,364 4.01 1,099 3.23

4,096 4 325 1,378 4.24 5,474 16.85 4,633 14.26

Notes to Table 1–12:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT MegaWizard interface. You may
choose from one, two, or four quad-output engines in parallel.

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–13. Resource Usage with the Burst Data Flow Architecture—Stratix III Devices (Part 1 of 2)

Points
Engine

Architecture
Number of
Engines (2)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

256 Quad Output 1 1,849 3,480 14,592 8 12

1,024 Quad Output 1 1,891 3,662 57,600 8 12

4,096 Quad Output 1 1,926 3,830 229,632 28 12

256 Quad Output 2 3,065 5,440 14,592 15 24

1,024 Quad Output 2 3,107 5,632 57,600 15 24

4,096 Quad Output 2 3,154 5,808 229,632 28 24

256 Quad Output 4 5,355 9,788 14,592 28 48

1,024 Quad Output 4 5,410 9,997 57,600 28 48

4,096 Quad Output 4 5,483 10,187 229,632 28 48

256 Single Output 1 712 1,431 9,472 3 4

1,024 Single Output 1 749 1,477 37,120 6 4

4,096 Single Output 1 816 1,523 147,712 19 4

256 Single Output 1 1,024 2,278 14,592 9 8

1,024 Single Output 2 1,037 2,354 57,600 11 8
© November 2009 Altera Corporation FFT MegaCore Function User Guide

1–10 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–14 lists performance with burst data flow architecture, using the 4 multipliers
/2 adders complex multiplier structure, for data and twiddle width 16, for Stratix III
(EP3SE50F780C2) devices.

4,096 Single Output 1 1,075 2,430 229,632 28 8

Notes to Table 1–13:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from

one to two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

Table 1–13. Resource Usage with the Burst Data Flow Architecture—Stratix III Devices (Part 2 of 2)

Points
Engine

Architecture
Number of
Engines (2)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

Table 1–14. Performance with the Burst Data Flow Architecture—Stratix III Devices

Points
Engine

Architecture

Number of
Engines

(1)
fMAX
(MHz)

Transform
Calculation Time (2)

Data Load &
Transform Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 421 235 0.56 491 1.17 331 0.79

1,024 Quad Output 1 409 1,069 2.62 2,093 5.12 1,291 3.16

4,096 Quad Output 1 381 5,167 13.57 9,263 24.32 6,157 16.17

256 Quad Output 2 368 162 0.44 397 1.08 299 0.81

1,024 Quad Output 2 386 557 1.44 1,581 4.09 1,163 3.01

4,096 Quad Output 2 379 2,607 6.88 6,703 17.7 5,133 13.55

256 Quad Output 4 346 118 0.34 374 1.08 283 0.82

1,024 Quad Output 4 341 340 1.00 1,364 4.00 1,099 3.22

4,096 Quad Output 4 327 1,378 4.22 5,474 16.76 4,633 14.19

256 Single Output 1 414 1,115 2.69 1,371 3.31 1,628 3.93

1,024 Single Output 1 407 5,230 12.85 6,344 15.58 7,279 17.88

4,096 Single Output 1 416 24,705 59.32 28,801 69.16 32,898 79.00

256 Single Output 2 413 585 1.42 841 2.04 1,098 2.66

1,024 Single Output 2 374 2,652 7.09 3,676 9.83 4,701 12.58

4,096 Single Output 2 391 12,329 31.53 16,495 42.18 20,605 52.69

Notes to Table 1–14:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from one to
two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output.
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 1: About This MegaCore Function 1–11
Performance and Resource Utilization
Stratix IV Devices
Table 1–15 shows the streaming data flow performance, using the 4 multipliers /2
adders complex multiplier structure, for data and twiddle width 16, for Stratix IV
(EP4SGX70DF29C2X) devices.

Table 1–16 shows the variable streaming data flow performance, with in order inputs
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix IV
(EP4SGX70DF29C2X) devices.

1 The variable streaming with fixed-point number representation uses natural word
growth, therefore the multiplier requirement is larger compared with the equivalent
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–17 lists resource usage with buffered burst data flow architecture, using the 4
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for
Stratix IV (EP4SGX70DF29C2X) devices.

Table 1–15. Performance with the Streaming Data Flow Engine Architecture—Stratix IV Devices

Points
Combinational

ALUTs
Logic

Registers
Memory

(Bits)
Memory
(M9K)

18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)

256 2,142 3,688 39,168 20 12 420 256 0.61

1,024 2,435 4,384 155,904 20 12 396 1,024 2.59

4,096 3,732 5,929 622,848 76 24 358 4,096 11.43

Table 1–16. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix IV Devices

Point
Type Points

Combinational
ALUTs

Logic
Registers

Memory
18 × 18
Blocks

fMAX
(MHz)

Clock
Cycle
Count

Transform
Time (s)Bits ALUTs M9K

Fixed 256 2,572 3,996 10,193 29 10 24 304 256 0.84

Fixed 1,024 3,601 5,433 42,377 75 14 32 303 1,024 3.38

Fixed 4096 4,693 6,857 171,611 134 32 40 293 4,096 14.00

Floating 256 17,948 20,457 24,959 225 53 48 227 256 1.13

Floating 1,024 22,342 24,758 84,798 — 87 64 228 1,024 4.49

Floating 4,096 27,322 29,708 316,579 — 136 80 225 4,096 18.18

Table 1–17. Resource Usage with Buffered Burst Data Flow Architecture—Stratix IV Devices (Part 1 of 2)

Points
Number of
Engines (1)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX

(MHz)

256 1 1,995 3,546 30,976 16 12 412

1,024 1 2,039 3,738 123,136 16 12 430

4,096 1 2,082 3,917 491,776 60 12 388

256 2 3,344 5,508 30,976 31 24 383

1,024 2 3,380 5,710 123,136 31 24 369

4,096 2 3,426 5,897 491,776 60 24 372
© November 2009 Altera Corporation FFT MegaCore Function User Guide

1–12 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–18 lists performance with buffered burst data flow architecture, using the 4
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for
Stratix IV (EP4SGX70DF29C2X) devices.

Table 1–19 lists resource usage with burst data flow architecture, using the 4
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for
Stratix IV (EP4SGX70DF29C2X) devices.

256 4 5,868 9,852 30,976 60 48 361

1,024 4 5,931 10,071 123,136 60 48 367

4,096 4 6,007 10,271 491,776 60 48 363

Notes to Table 1–17:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT MegaWizard interface.

Table 1–17. Resource Usage with Buffered Burst Data Flow Architecture—Stratix IV Devices (Part 2 of 2)

Points
Number of
Engines (1)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

fMAX

(MHz)

Table 1–18. Performance with the Buffered Burst Data Flow Architecture—Stratix IV Devices

Points
Number of
Engines (1) fMAX (MHz)

Transform Calculation
Time (2)

Data Load & Transform
Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 412 235 0.57 491 1.19 331 0.80

1,024 1 430 1,069 2.49 2,093 4.87 1,291 3.00

4,096 1 388 5,167 13.32 9,263 23.88 6,157 15.87

256 2 383 162 0.42 397 1.04 299 0.78

1,024 2 369 557 1.51 1,581 4.28 1,163 3.15

4,096 2 372 2,607 7.00 6,703 18.00 5,133 13.78

256 4 361 118 0.33 347 0.96 283 0.78

1,024 4 367 340 0.93 1,364 3.72 1,099 3.00

4,096 4 363 1,378 3.8 5,474 15.09 4,633 12.78

Notes to Table 1–18:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT MegaWizard interface. You may
choose from one, two, or four quad-output engines in parallel.

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–19. Resource Usage with the Burst Data Flow Architecture—Stratix IV Devices (Part 1 of 2)

Points
Engine

Architecture
Number of
Engines (2)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

256 Quad Output 1 1,849 3,480 14,592 8 12

1,024 Quad Output 1 1,891 3,663 57,600 8 12

4,096 Quad Output 1 1,926 3,830 229,632 28 12

256 Quad Output 2 3,065 5,440 14,592 15 24

1,024 Quad Output 2 3,106 5,632 57,600 15 24

4,096 Quad Output 2 3,154 5,808 229,632 28 24
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 1: About This MegaCore Function 1–13
Performance and Resource Utilization
Table 1–20 lists performance with burst data flow architecture, using the 4 multipliers
/2 adders complex multiplier structure, for data and twiddle width 16, for Stratix IV
(EP4SGX70DF29C2X) devices.

256 Quad Output 4 5,353 9,788 14,592 28 48

1,024 Quad Output 4 5,408 9,998 57,600 28 48

4,096 Quad Output 4 5,482 10,187 229,632 28 48

256 Single Output 1 712 1,431 9,472 3 4

1,024 Single Output 1 749 1,477 37,120 6 4

4,096 Single Output 1 817 1,523 147,712 19 4

256 Single Output 1 1,024 2,278 14,592 9 8

1,024 Single Output 2 1,038 2,354 57,600 11 8

4,096 Single Output 1 1,075 2,430 229,632 28 8

Notes to Table 1–19:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from

one to two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

Table 1–19. Resource Usage with the Burst Data Flow Architecture—Stratix IV Devices (Part 2 of 2)

Points
Engine

Architecture
Number of
Engines (2)

Combinational
ALUTs

Logic
Registers

Memory
(Bits)

Memory
(M9K)

18 × 18
Blocks

Table 1–20. Performance with the Burst Data Flow Architecture—Stratix IV Devices (Part 1 of 2)

Points
Engine

Architecture
Number of
Engines (1)

fMAX
(MHz)

Transform
Calculation Time (2)

Data Load &
Transform Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 418 235 0.56 491 1.17 331 0.79

1,024 Quad Output 1 433 1,069 2.47 2,093 4.84 1,291 2.98

4,096 Quad Output 1 391 5,167 13.22 9,263 23.69 6,157 15.75

256 Quad Output 2 398 162 0.41 397 1.00 299 0.75

1,024 Quad Output 2 404 557 1.38 1,581 3.91 1,163 2.88

4,096 Quad Output 2 379 2,607 6.88 6,703 17.70 5,133 13.56

256 Quad Output 4 363 118 0.33 374 1.03 283 0.78

1,024 Quad Output 4 367 340 0.93 1,364 3.72 1,099 3.00

4,096 Quad Output 4 346 1,378 3.99 5,474 15.84 4,633 13.41

256 Single Output 1 421 1,115 2.65 1,371 3.26 1,628 3.87

1,024 Single Output 1 414 5,230 12.63 6,344 15.32 7,279 17.58

4,096 Single Output 1 396 24,705 62.35 28,801 72.69 32,898 83.03

256 Single Output 2 402 585 1.46 841 2.09 1,098 2.73

1,024 Single Output 2 423 2,652 6.27 3,676 8.69 4,701 11.11
© November 2009 Altera Corporation FFT MegaCore Function User Guide

1–14 Chapter 1: About This MegaCore Function
Installation and Licensing
Installation and Licensing
The FFT MegaCore function is part of the MegaCore® IP Library, which is distributed
with the Quartus® II software and can be downloaded from the Altera® website,
www.altera.com.

f For system requirements and installation instructions, refer to the Altera Software
Installation and Licensing manual.

Figure 1–1 shows the directory structure after you install the FFT MegaCore function,
where <path> is the installation directory for the Quartus II software.

The default installation directory on Windows is c:\altera\<version> and on Linux is
/opt/altera<version>.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM
megafunction) within your system.

4,096 Single Output 2 405 12,329 30.47 16,495 40.77 20,605 50.93

Notes to Table 1–20:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from one to
two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output.
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–20. Performance with the Burst Data Flow Architecture—Stratix IV Devices (Part 2 of 2)

Points
Engine

Architecture
Number of
Engines (1)

fMAX
(MHz)

Transform
Calculation Time (2)

Data Load &
Transform Calculation

Block Throughput
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Figure 1–1. Directory Structure

doc
Contains the documentation for the MegaCore function.
lib
Contains encrypted lower-level files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores.

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
fft
Contains the FFT MegaCore function files and documentation.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

www.altera.com
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

Chapter 1: About This MegaCore Function 1–15
Installation and Licensing
■ Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily.

■ Generate time-limited device programming files for designs that include
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the FFT MegaCore function when you are
completely satisfied with its functionality and performance, and want to take your
design to production. After you purchase a license, you can request a license file from
the Altera website at www.altera.com/licensing and install it on your computer.
When you request a license file, Altera emails you a license.dat file. If you do not have
Internet access, contact your local Altera representative.

f For more information about OpenCore Plus hardware evaluation, refer to AN 320:
OpenCore Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all megafunctions in a design, the device can
operate for a longer time or indefinitely.

All megafunctions in a device time-out simultaneously when the most restrictive
evaluation time is reached. If there is more than one megafunction in a design, a
specific megafunction’s time-out behavior might be masked by the time-out behavior
of the other megafunctions.

The untethered time-out for the FFT MegaCore function is one hour; the tethered
time-out value is indefinite.

The signals source_real, source_imag, and source_exp are forced low when
the evaluation time expires.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an320.pdf

1–16 Chapter 1: About This MegaCore Function
Installation and Licensing
FFT MegaCore Function User Guide © November 2009 Altera Corporation

© November 2009 Altera Corporation
2. Getting Started
Design Flows
The FFT MegaCore function supports the following design flows:

■ DSP Builder: Use this flow if you want to create a DSP Builder model that
includes a FFT MegaCore function variation.

■ MegaWizard™ Plug-In Manager: Use this flow if you would like to create a FFT
MegaCore function variation that you can instantiate manually in your design.

This chapter describes how you can use a FFT MegaCore function in either of these
flows. The parameterization provides the same options in each flow and is described
in “Parameterize the MegaCore Function” on page 2–3.

After parameterizing and simulating a design in either of these flows, you can
compile the completed design in the Quartus II software.

DSP Builder Flow
Altera’s DSP Builder product shortens digital signal processing (DSP) design cycles
by helping you create the hardware representation of a DSP design in an
algorithm-friendly development environment.

DSP Builder integrates the algorithm development, simulation, and verification
capabilities of The MathWorks MATLAB® and Simulink® system-level design tools
with Altera Quartus® II software and third-party synthesis and simulation tools. You
can combine existing Simulink blocks with Altera DSP Builder blocks and MegaCore
function variation blocks to verify system level specifications and perform simulation.

In DSP Builder, a Simulink symbol for the MegaCore function appears in the
MegaCore Functions library of the Altera DSP Builder Blockset in the Simulink library
browser.

You can use the FFT MegaCore function in the MATLAB/Simulink environment by
performing the following steps:

1. Create a new Simulink model.

2. Select the fft_<version> block from the MegaCore Functions library in the
Simulink Library Browser, add it to your model, and give the block a unique
name.

3. Double-click on the fft_<version> block in your model to display the
MegaWizard interface and parameterize the MegaCore function variation. For an
example of setting parameters for the FFT MegaCore function, refer to
“Parameterize the MegaCore Function” on page 2–3.

4. Click Finish in the MegaWizard interface to complete the parameterization and
generate your FFT MegaCore function variation. For information about the
generated files, refer to Table 2–1 on page 2–9.

5. Connect your FFT MegaCore function variation to the other blocks in your model.
FFT MegaCore Function User Guide

2–2 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
6. Simulate the MegaCore function variation in your DSP Builder model.

f For more information about the DSP Builder flow, refer to the Using MegaCore
Functions chapter in the DSP Builder User Guide.

1 When you are using the DSP Builder flow, device selection, simulation, Quartus II
compilation and device programming are all controlled within the DSP Builder
environment.

DSP Builder supports integration with SOPC Builder using Avalon® Memory-Mapped
(Avalon-MM) master/slave and Avalon Streaming (Avalon-ST) source/sink
interfaces.

f For more information about these interface types, refer to the Avalon Interface
Specifications.

MegaWizard Plug-In Manager Flow
The MegaWizard™ Plug-in Manager flow allows you to customize a Viterbi Compiler
MegaCore function, and manually integrate the MegaCore function variation into a
Quartus II design.

Follow the steps below to use the MegaWizard Plug-in Manager flow.

1. Create a new project using the New Project Wizard available from the File menu
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option
to create a new custom megafunction variation (Figure 2–1).

Figure 2–1. MegaWizard Plug-In Manager
FFT MegaCore Function User Guide © November 2009 Altera Corporation

http://www.altera.com/literature/ug/ug_dsp_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 2: Getting Started 2–3
MegaWizard Plug-In Manager Flow
3. Click Next and select FFT <version> from the DSP>Transforms section in the
Installed Plug-Ins tab.

4. Verify that the device family is the same as you specified in the New Project
Wizard.

5. Select the top-level output file type for your design; the wizard supports VHDL
and Verilog HDL.

6. The MegaWizard Plug-In Manager shows the project path that you specified in the
New Project Wizard. Append a variation name for the MegaCore function output
files <project path>\<variation name>. Figure 2–2 shows the wizard after you have
made these settings.

7. Click Next to launch IP Toolbench.

Parameterize the MegaCore Function
To parameterize your MegaCore function, follow these steps:

1. Click Step 1: Parameterize in IP Toolbench (Figure 2–3 on page 2–4).

Figure 2–2. Select the MegaCore Function
© November 2009 Altera Corporation FFT MegaCore Function User Guide

2–4 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
2. Do not change the Target Device Family The device family is automatically set to
the value that was specified in your Quartus II project and the generated HDL for
your MegaCore function variation may be incorrect if this value is changed
(Figure 2–4).

Figure 2–3. IP Toolbench—Parameterize

Figure 2–4. Parameters Tab
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 2: Getting Started 2–5
MegaWizard Plug-In Manager Flow
3. Choose the Transform length, Data precision, and Twiddle precision.

1 The twiddle factor precision must be less than or equal to the data
precision.

4. Click the Architecture tab (Figure 2–5).

5. Choose the FFT engine architecture, number of parallel FFT engines, and the I/O
data flow.

If you select the Streaming I/O data flow, the FFT MegaCore function
automatically generates a design with a Quad Output FFT engine architecture and
the minimum number of parallel FFT engines for the required throughput.

1 A single FFT engine architecture provides enough performance for up to a
1,024-point streaming I/O data flow FFT.

Figure 2–5. Architecture Tab
© November 2009 Altera Corporation FFT MegaCore Function User Guide

2–6 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
If you select Variable Streaming I/O data flow, the Transform length (specified
on the Architecture Tab) represents the maximum transform length that can be
performed. All transforms of length 2m where 6 m log2(transform length) can be
performed at runtime.

1 If you select Variable Streaming and Floating Point on the Architecture
tab, the precision (on the Parameters tab) is automatically set to 32.

If you select Variable Streaming I/O data flow, options to set the I/O order and
data representation are visible. The Input Order option allow you to select the
order in which the samples are presented to the FFT. If you select Natural Order,
the FFT expects the order of the input samples to be sequential (1, 2 …, n – 1, n)
where n is the size of the current transform. For Bit Reverse Order, the FFT expects
the input samples to be in bit-reversed order. For –N/2 to N/2, the FFT expects the
input samples to be in the order –N/2 to (N/2) – 1 (also known as DC-centered
order). Similarly the Output Order option specifies the order in which the FFT
generates the output. You can also select Fixed Point or Floating Point data
representation.

6. Click the Implementation Options tab (Figure 2–6).

Figure 2–6. Implementation Options Tab
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 2: Getting Started 2–7
MegaWizard Plug-In Manager Flow
7. Choose the complex multiplier implementation.

You can choose a Structure with three multipliers and five adders or four
multipliers and two adders. You can also choose to Implement Multipliers in DSP
blocks only, logic cells only or both DSP blocks and logic cells.

8. Turn on Global Clock Enable, if you want to add a global clock enable to your
design.

9. Specify the memory options.

You can set the Twiddle ROM Distribution between 100% M9K and 100% MLAB,
select to Use M-RAM Blocks and choose to Implement appropriate logic
functions in RAM.

1 The complex multiplier implementation and memory options are not
available for the variable streaming architecture.

10. Click Finish when the implementation options are set.

f For more information about the FFT MegaCore function parameters, refer to Table 3–3
on page 3–13.

Set Up Simulation
An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL model
produced by the Quartus II software. The model allows for fast functional simulation
of IP using industry-standard VHDL and Verilog HDL simulators.

c You may only use these simulation model output files for simulation purposes and
expressly not for synthesis or any other purposes. Using these models for synthesis
creates a nonfunctional design.

To generate an IP functional simulation model for your MegaCore function, follow
these steps:

1. Click Step 2: Set Up Simulation in IP Toolbench (Figure 2–3 on page 2–4).

2. Turn on Generate Simulation Model (Figure 2–7 on page 2–8).

3. Choose the required language in the Language list.

4. Some third-party synthesis tools can use a netlist that contains only the structure
of the MegaCore function, but not detailed logic, to optimize performance of the
design that contains the MegaCore function. If your synthesis tool supports this
feature, turn on Generate netlist.

5. Click OK.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

2–8 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
Generate the MegaCore Function
To generate your MegaCore function, follow these steps:

1. Click Step 3: Generate in IP Toolbench (Figure 2–3 on page 2–4).

The generation phase may take several minutes to complete. The generation
progress and status is displayed in a report window.

Figure 2–8 shows the generation report.

Figure 2–7. Generate Simulation Model

Figure 2–8. Generation Report
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 2: Getting Started 2–9
MegaWizard Plug-In Manager Flow
Table 2–1 describes the generated files and other files that may be in your project
directory. The names and types of files specified in the IP Toolbench report vary
based on whether you created your design with VHDL or Verilog HDL

Table 2–1. Generated Files (Part 1 of 2) (Note 1) & (2)

Filename Description

imag_input.txt The text file contains input imaginary component random data. This file is read by
the generated VHDL or Verilog HDL MATLAB testbenches.

real_input.txt Test file containing real component random data. This file is read by the generated
VHDL or Verilog HDL and MATLAB testbenches.

<variation name>.bsf Quartus II symbol file for the MegaCore function variation. You can use this file in
the Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore function variation. Add the
contents of this file to any VHDL architecture that instantiates the MegaCore
function.

<variation name>.html A MegaCore function report file in hypertext markup language format.

<variation name>.qip A single Quartus II IP file is generated that contains all of the assignments and
other information required to process your MegaCore function variation in the
Quartus II compiler. You are prompted to add this file to the current Quartus II
project when you exit from the MegaWizard.

<variation name>.vo or .vho VHDL or Verilog HDL IP functional simulation model.

<variation name>.vhd, or .v A MegaCore function variation file, which defines a VHDL or Verilog HDL top-level
description of the custom MegaCore function. Instantiate the entity defined by
this file inside of your design. Include this file when compiling your design in the
Quartus II software.

<variation name>_bit_reverse_top.vhd Example top-level VHDL design with bit-reversal module (variable streaming FFT
engine-only mode only). This file shows how the bit-reversal operation can be
external to the MegaCore architecture. For example, when there is an opportunity
to combine the bit-reversal operation with another user-specified operation.

<variation name>_1n1024cos.hex,
<variation name>_2n1024cos.hex,
<variation name>_3n1024cos.hex

Intel hex-format ROM initialization files (not generated for variable streaming
FFT).

<variation name>_1n1024sin.hex,
<variation name>_2n1024sin.hex,
<variation name>_3n1024sin.hex

Intel hex-format ROM initialization files (not generated for variable streaming
FFT).

<variation name>_fft.fsi A DSP Builder fast functional simulation model parameter description file
(variable streaming only).

<variation name>_model.m MATLAB m-file describing a MATLAB bit-accurate model.

<variation name>_tb.m MATLAB testbench.

<variation name>_syn.v or
<variation name>_syn.vhd

A timing and resource netlist for use in some third-party synthesis tools.

<variation name>_tb.v or

<variation name>_tb.vhd

Verilog HDL or VHDL testbench file.

<variation name>_nativelink.tcl Tcl Script that sets up NativeLink in the Quartus II software to natively simulate
the design using selected EDA tools. Refer to “Simulating in Third-Party
Simulation Tools Using NativeLink” on page 2–12.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

2–10 Chapter 2: Getting Started
Simulate the Design
2. After you review the generation report, click Exit to close IP Toolbench. Then click
Yes on the Quartus II IP Files prompt to add the .qip file describing your custom
MegaCore function to the current Quartus II project.

f Refer to the Quartus II Help for more information about the MegaWizard Plug-In
Manager.

You can now integrate your custom MegaCore function variation into your design
and simulate and compile.

Simulate the Design
This section describes the following simulation techniques:

■ Simulate in the MATLAB Software

■ Simulate with IP Functional Simulation Models

■ Simulating in Third-Party Simulation Tools Using NativeLink

Simulate in the MATLAB Software
This section discusses fixed-transform and variable streaming architecture
simulations.

Fixed Transform Architectures
The FFT MegaCore function outputs a bit-accurate MATLAB model <variation
name>_model.m, which you can use to model the behavior of your custom FFT
variation in the MATLAB software. The model takes a complex vector as input and it
outputs the transform-domain complex vector and corresponding block exponent
values. The length and direction of the transform (FFT/IFFT) are also passed as inputs
to the model.

If the input vector length is an integral multiple of N, the transform length, the length
of the output vector(s) is equal to the length of the input vector. However, if the input
vector is not an integral multiple of N, it is zero-padded to extend the length to be so.

f For additional information about exponent values, refer to AN 404: FFT/IFFT Block
Floating Point Scaling.

twr1_opt.hex, twi1_opt.hex,
twr2_opt.hex, twi2_opt.hex,
twr3_opt.hex, twi3_opt.hex,
twr4_opt.hex, twi4_opt.hex,

Intel hex-format ROM initialization files (variable streaming FFT only).

Notes to Table 2–1:

(1) These files are variation dependent, some may be absent or their names may change.
(2) <variation name> is a prefix variation name supplied automatically by IP Toolbench.

Table 2–1. Generated Files (Part 2 of 2) (Note 1) & (2)

Filename Description
FFT MegaCore Function User Guide © November 2009 Altera Corporation

http://www.altera.com/literature/an/an404.pdf
http://www.altera.com/literature/an/an404.pdf

Chapter 2: Getting Started 2–11
Simulate the Design
The wizard also creates the MATLAB testbench file <variation name>_tb.m. This file
creates the stimuli for the MATLAB model by reading the input complex random data
from IP Toolbench-generated.

If you selected Floating point data representation, the input data is generated in
hexadecimal format.

To model your fixed-transform architecture FFT MegaCore function variation in the
MATLAB software, follow these steps:

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your
project.

3. Perform the simulation:

a. Type help <variation name>_model at the command prompt to view the
input and output vectors that are required to run the MATLAB model as a
standalone M-function. Create your input vector and make a function call to
<variation name>_model. For example:

N=2048;
INVERSE = 0; % 0 => FFT 1=> IFFT
x = (2^12)*rand(1,N) + j*(2^12)*rand(1,N);
[y,e] = <variation name>_model(x,N,INVERSE);

or

b. Run the provided testbench by typing the name of the testbench, <variation
name>_tb at the command prompt.

f For more information about MATLAB and Simulink, refer to the MathWorks web site
at www.mathworks.com.

Variable Streaming Architecture
The FFT MegaCore function outputs a bit-accurate MATLAB model <variation
name>_model.m, which you can use to model the behavior of your custom FFT
variation in the MATLAB software. The model takes a complex vector as input and it
outputs the transform-domain complex vector. The lengths and direction of the
transforms (FFT/IFFT) (specified as one entry per block) are also passed as an input to
the model.

You must ensure that the length of the input vector is at least as large as the sum of the
transform sizes for the model to function correctly.

The wizard also creates the MATLAB testbench file <variation name>_tb.m. This file
creates the stimuli for the MATLAB model by reading the input complex random data
from files generated by IP Toolbench.

To model your variable streaming architecture FFT MegaCore function variation in
the MATLAB software, follow these steps:

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your
project.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

www.mathworks.com

2–12 Chapter 2: Getting Started
Simulate the Design
3. Perform the simulation:

a. Type help <variation name>_model at the command prompt to view the
input and output vectors that are required to run the MATLAB model as a
standalone M-function. Create your input vector and make a function call to
<variation name>_model. For example:

nps=[256,2048];
inverse = [0,1]; % 0 => FFT 1=> IFFT
x = (2^12)*rand(1,sum(nps)) + j*(2^12)*rand(1,sum(nps));
[y] = <variation name>_model(x,nps,inverse);

or

b. Run the provided testbench by typing the name of the testbench, <variation
name>_tb at the command prompt.

1 If you selected bit-reversed output order, you can reorder the data with the
following MATLAB code:

y = y(bit_reverse(0:(FFTSIZE-1), log2(FFTSIZE)) + 1);

where bit_reverse is:

function y = bit_reverse(x, n_bits)
y = bin2dec(fliplr(dec2bin(x, n_bits)));

Simulate with IP Functional Simulation Models
To simulate your design, use the IP functional simulation models generated by IP
Toolbench. The IP functional simulation model is the .vo or .vho file generated as
specified in “Set Up Simulation” on page 2–7. Compile the .vo or .vho file in your
simulation environment to perform functional simulation of your custom variation of
the MegaCore function.

f For more information about IP functional simulation models, refer to the Simulating
Altera IP in Third-Party Simulation Tools chapter in volume 3 of the Quartus II
Handbook.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the
Quartus II software, using NativeLink.

f For more information about NativeLink, refer to the Simulating Altera IP in Third-Party
Simulation Tools chapter in volume 3 of the Quartus II Handbook.

You can use the Tcl script file <variation name>_nativelink.tcl to assign default
NativeLink testbench settings to the Quartus II project.

To set up simulation in the Quartus II software using NativeLink, follow these steps:

1. Create a custom variation but ensure you specify your variation name to match the
Quartus II project name.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

Chapter 2: Getting Started 2–13
Compile the Design
2. Check that the absolute path to your third-party simulator executable is set. On the
Tools menu click Options and select EDA Tools Options.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. Select the <variation name>_nativelink.tcl Tcl
script and click Run. Check for a message confirming that the Tcl script was
successfully loaded.

5. On the Assignments menu, click Settings, expand EDA Tool Settings and select
Simulation. Select a simulator under Tool Name and in NativeLink Settings,
select Test Benches.

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL
Simulation.

Compile the Design
Use the Quartus II software to synthesize and place and route your design. Refer to
Quartus II Help for instructions on performing compilation.

Fixed Transform Architecture
To compile your fixed-transform architecture design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to step 2. If
you are using a third-party synthesis tool to synthesize your design, follow these
steps:

a. Set a black box attribute for your FFT MegaCore function custom variation
before you synthesize the design. Refer to Quartus II Help for instructions on
setting black-box attributes per synthesis tool.

b. Run the synthesis tool to produce an EDIF Netlist File (.edf) or Verilog Quartus
Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

1 The .qip file supersedes the files you had to add to the project explicitly in previous
versions of the Quartus II software. The .qip file contains the information about the
MegaCore function that the Quartus II software requires.

2. On the Processing menu, click Start Compilation.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

2–14 Chapter 2: Getting Started
Program a Device
Variable Streaming Architecture
To compile your variable streaming architecture design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to step 2. If
you are using a third-party synthesis tool to synthesize your design, follow these
steps:

a. Set a black-box attribute for your FFT MegaCore function custom variation
before you synthesize the design. Refer to Quartus II Help for instructions on
setting black-box attributes per synthesis tool.

b. Run the synthesis tool to produce an EDIF Netlist File (.edf) or Verilog Quartus
Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

2. On the Project menu, click Add/Remove Files in Project.

3. You should see a list of files in the project. If no files are listed, browse to the \lib
directory, then select and add all files with the prefix auk_dspip_r22sdf and
auk_dspip_bit_reverse. Browse to the <project> directory and select all files with
prefix auk_dspip.

4. On the Processing menu, click Start Compilation.

Program a Device
After you have compiled your design, program your targeted Altera device, and
verify your design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate the FFT
MegaCore function before you purchase a license. OpenCore Plus evaluation allows
you to generate an IP functional simulation model, and produce a time-limited
programming file.

f For more information about IP functional simulation models, refer to the Simulating
Altera IP in Third-Party Simulation Tools chapter in volume 3 of the Quartus II Handbook.

You can simulate the FFT in your design, and perform a time-limited evaluation of
your design in hardware.

f For more information about OpenCore Plus hardware evaluation using the FFT, refer
to “OpenCore Plus Evaluation” on page 1–14 and AN 320: OpenCore Plus Evaluation of
Megafunctions.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

© November 2009 Altera Corporation
3. Functional Description
The discrete Fourier transform (DFT), of length N, calculates the sampled Fourier
transform of a discrete-time sequence at N evenly distributed points k = 2k/N on
the unit circle.

The following equation shows the length-N forward DFT of a sequence x(n):

where k = 0, 1, ... N – 1

The following equation shows the length-N inverse DFT:

where n = 0, 1, ... N – 1

The complexity of the DFT direct computation can be significantly reduced by using
fast algorithms that use a nested decomposition of the summation in equations one
and two—in addition to exploiting various symmetries inherent in the complex
multiplications. One such algorithm is the Cooley-Tukey radix-r decimation-in-
frequency (DIF) FFT, which recursively divides the input sequence into N/r sequences
of length r and requires logrN stages of computation.

Each stage of the decomposition typically shares the same hardware, with the data
being read from memory, passed through the FFT processor and written back to
memory. Each pass through the FFT processor is required to be performed logrN
times. Popular choices of the radix are r = 2, 4, and 16. Increasing the radix of the
decomposition leads to a reduction in the number of passes required through the FFT
processor at the expense of device resources.

1 The MegaCore function does not apply the scaling factor 1/N required for a length-N
inverse DFT. You must apply this factor externally.

Buffered, Burst, & Streaming Architectures
A radix-4 decomposition, which divides the input sequence recursively to form four-
point sequences, has the advantage that it requires only trivial multiplications in the
four-point DFT and is the chosen radix in the Altera® FFT MegaCore® function. This
results in the highest throughput decomposition, while requiring non-trivial complex
multiplications in the post-butterfly twiddle-factor rotations only. In cases where N is
an odd power of two, the FFT MegaCore automatically implements a radix-2 pass on
the last pass to complete the transform.

X k x n e
j2nk– N

n 0=

N 1–

=

x n 1 N X k e
j2nk N

k 0=

N 1–

=
FFT MegaCore Function User Guide

3–2 Chapter 3: Functional Description
Variable Streaming Architecture
To maintain a high signal-to-noise ratio throughout the transform computation, the
FFT MegaCore function uses a block-floating-point architecture, which is a trade-off
point between fixed-point and full-floating point architectures.

In a fixed-point architecture, the data precision needs to be large enough to
adequately represent all intermediate values throughout the transform computation.
For large FFT transform sizes, an FFT fixed-point implementation that allows for
word growth can make either the data width excessive or can lead to a loss of
precision.

In a floating-point architecture each number is represented as a mantissa with an
individual exponent—while this leads to greatly improved precision, floating-point
operations tend to demand increased device resources.

In a block-floating point architecture, all of the values have an independent mantissa
but share a common exponent in each data block. Data is input to the FFT function as
fixed point complex numbers (even though the exponent is effectively 0, you do not
enter an exponent).

The block-floating point architecture ensures full use of the data width within the FFT
function and throughout the transform. After every pass through a radix-4 FFT, the
data width may grow up to log2 (42) = 2.5 bits. The data is scaled according to a
measure of the block dynamic range on the output of the previous pass. The number
of shifts is accumulated and then output as an exponent for the entire block. This
shifting ensures that the minimum of least significant bits (LSBs) are discarded prior
to the rounding of the post-multiplication output. In effect, the block-floating point
representation acts as a digital automatic gain control. To yield uniform scaling across
successive output blocks, you must scale the FFT function output by the final
exponent.

1 In comparing the block-floating point output of the Altera FFT MegaCore function to
the output of a full precision FFT from a tool like MATLAB, the output should be
scaled by 2 (–exponent_out) to account for the discarded LSBs during the transform. (Refer
to “Block Floating Point Scaling” on page A–1.)

f For more information about exponent values, refer to AN 404: FFT/IFFT Block
Floating Point Scaling.

Variable Streaming Architecture
The variable streaming architecture uses a radix 22 single delay feedback architecture,
which is a fully pipelined architecture. For a length N transform there are log4(N)
stages concatenated together. The radix 22 algorithm has the same multiplicative
complexity of a fully pipelined radix-4 architecture, however the butterfly unit retains
a radix-2 architecture. The butterfly units use the DIF decomposition.

The variable streaming architecture uses either fixed point of single precision floating
point data representation. Fixed point representation allows for natural word growth
through the pipeline. The maximum growth of each stage is log2(4 2) = 2.5 bits,
which is accommodated in the design by growing the pipeline stages by either 2 bits
or 3 bits. After the complex multiplication the data is rounded down to the expanded
data size using convergent rounding.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

www.altera.com/literature/an/an404.pdf
www.altera.com/literature/an/an404.pdf

Chapter 3: Functional Description 3–3
The Avalon Streaming Interface
The floating point internal data representation is single precision floating point (32 bit,
IEEE 754 representation). Floating point operations are costly in terms of hardware
resources. To reduce the amount of logic required for floating point operations, the
variable streaming FFT uses "fused" floating point kernels. The reduction in logic
occurs by fusing together several floating point operations and reducing the number
of normalizations that need to occur.

You can select input and output orders generated by the FFT. Table 3–1 shows the
input and output order options.

Some applications for the FFT require an FFT > user operation > IFFT chain. In this
case, choosing the input order and output order carefully can lead to significant
memory and latency savings. For example, consider where the input to the first FFT is
in natural order and the output is in bit-reversed order (FFT is operating in engine-
only mode). In this example, if the IFFT operation is configured to accept bit-reversed
inputs and produces natural order outputs (IFFT is operating in engine-only mode),
only the minimum amount of memory is required, which provides a saving of N
complex memory words, and a latency saving of N clock cycles, where N is the size of
the current transform.

The Avalon Streaming Interface
The Avalon® Streaming (Avalon-ST) interface is an evolution of the Atlantic™
interface. The Avalon-ST interface defines a standard, flexible, and modular protocol
for data transfers from a source interface to a sink interface and simplifies the process
of controlling the flow of data in a datapath.

The Avalon-ST interface signals can describe traditional streaming interfaces
supporting a single stream of data without knowledge of channels or packet
boundaries. Such interfaces typically contain data, ready, and valid signals. The
Avalon-ST interface can also support more complex protocols for burst and packet
transfers with packets interleaved across multiple channels.

The Avalon-ST interface inherently synchronizes multi-channel designs, which allows
you to achieve efficient, time-multiplexed implementations without having to
implement complex control logic.

Table 3–1. Input & Output Order Options

Input Order Output Order Mode Comments

Natural Bit reversed Engine-only Requires minimum memory and minimum latency.

Bit reversed Natural

DC-centered Bit-reversed

Natural Natural Engine with
bit-reversal

At the output, requires an extra N complex memory
words and an additional N clock cycles latency,
where N is the size of the transform.

Bit reversed Bit reversed

DC-centered Natural
© November 2009 Altera Corporation FFT MegaCore Function User Guide

3–4 Chapter 3: Functional Description
FFT Processor Engine Architectures
The Avalon-ST interface supports backpressure, which is a flow control mechanism,
where a sink can signal to a source to stop sending data. The sink typically uses
backpressure to stop the flow of data when its FIFO buffers are full or when there is
congestion on its output. When designing a datapath, which includes the FFT
MegaCore function, you may not need backpressure if you know the downstream
components can always receive data. You may achieve a higher clock rate by driving
the source ready signal source_ready of the FFT high, and not connecting the sink
ready signal sink_ready.

The FFT MegaCore function has a READY_LATENCY value of zero.

f For more information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

FFT Processor Engine Architectures
The FFT MegaCore function can be parameterized to use either quad-output or
single-output engine architecture. To increase the overall throughput of the FFT
MegaCore function, you may also use multiple parallel engines of a variation. This
section discusses the following topics:

■ Radix 22 single-delay feedback architecture

■ Quad-output FFT engine architecture

■ Single-output FFT engine architecture

Radix-22 Single Delay Feedback Architecture
Radix-22 single delay feedback architecture is a fully pipelined architecture for
calculating the FFT of incoming data. It is similar to radix-2 single delay feedback
architectures. However, the twiddle factors are rearranged such that the
multiplicative complexity is equivalent to a radix-4 single delay feedback architecture.

There are log2(N) stages with each stage containing a single butterfly unit and a
feedback delay unit that delays the incoming data by a specified number of cycles,
halved at every stage. These delays effectively align the correct samples at the input of
the butterfly unit for the butterfly calculations. Every second stage contains a
modified radix-2 butterfly whereby a trivial multiplication by –j is performed before
the radix-2 butterfly operations. The output of the pipeline is in bit-reversed order.

The following scheduled operations in the pipeline for an FFT of length N = 16 occur.

1. For the first 8 clock cycles, the samples are fed unmodified through the butterfly
unit to the delay feedback unit.

2. The next 8 clock cycles perform the butterfly calculation using the data from the
delay feedback unit and the incoming data. The higher order calculations are sent
through to the delay feedback unit while the lower order calculations are sent to
the next stage.

3. The next 8 clock cycles feeds the higher order calculations stored in the delay
feedback unit unmodified through the butterfly unit to the next stage.

Subsequent data stages use the same principles. However, the delays in the feedback
path are adjusted accordingly.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: Functional Description 3–5
FFT Processor Engine Architectures
Quad-Output FFT Engine Architecture
For applications where transform time is to be minimized, a quad-output FFT engine
architecture is optimal. The term quad-output refers to the throughput of the internal
FFT butterfly processor. The engine implementation computes all four radix-4
butterfly complex outputs in a single clock cycle.

Figure 3–1 shows a diagram of the quad-output FFT engine.

Complex data samples x[k,m] are read from internal memory in parallel and re-
ordered by switch (SW). Next, the ordered samples are processed by the radix-4
butterfly processor to form the complex outputs G[k,m]. Because of the inherent
mathematics of the radix-4 DIF decomposition, only three complex multipliers are
required to perform the three non-trivial twiddle-factor multiplications on the outputs
of the butterfly processor. To discern the maximum dynamic range of the samples, the
four outputs are evaluated in parallel by the block-floating point units (BFPU). The
appropriate LSBs are discarded and the complex values are rounded and re-ordered
before being written back to internal memory.

Single-Output FFT Engine Architecture
For applications where the minimum-size FFT function is desired, a single-output
engine is most suitable. The term single-output again refers to the throughput of the
internal FFT butterfly processor. In the engine architecture, a single butterfly output is
computed per clock cycle, requiring a single complex multiplier (Figure 3–2 on
page 3–6).

Figure 3–1. Quad-Output FFT Engine

ROM
0

FFT Engine H[k,0]

H[k,1]

H[k,2]

H[k,3]

G[k,0]

G[k,1]

G[k,2]

G[k,3]

x[k,0]

x[k,1]

x[k,2]

x[k,3]

-j
-1

j
-1

-1

j
-1

-j

RAM
A1

RAM
A0

RAM
A2

RAM
A3

BFPU

BFPU

BFPU

BFPU

SW SW

RAM
A1

RAM
A0

RAM
A2

RAM
A3

ROM
1

ROM
2

© November 2009 Altera Corporation FFT MegaCore Function User Guide

3–6 Chapter 3: Functional Description
I/O Data Flow Architectures
I/O Data Flow Architectures
This section describes and illustrates the following I/O data flow architectural
options supported by the FFT MegaCore function:

■ Streaming

■ Variable Streaming

■ Buffered Burst

■ Burst

f For information about setting the architectural parameters in IP Toolbench, refer to
“Parameterize the MegaCore Function” on page 2–3.

Streaming
The streaming I/O data flow FFT architecture allows continuous processing of input
data, and outputs a continuous complex data stream without the requirement to halt
the data flow in or out of the FFT function.

Streaming FFT Operation
Figure 3–3 on page 3–7 shows an example simulation waveform.

Following the de-assertion of the system reset, the data source asserts sink_valid to
indicate to the FFT function that valid data is available for input. A successful data
transfer occurs when both the sink_valid and the sink_ready are asserted.

When the data transfer is complete, sink_sop is de-asserted and the data samples
are loaded in natural order.

For more information about the signals, refer to Table 3–4 on page 3–15.

f For more information about the Avalon-ST interface, refer to the Avalon Interface
Specifications.

Figure 3–2. Single-Output FFT Engine Architecture

H[k,m]

G[k,0]

G[k,1]

G[k,2]

G[k,3]

x[k,0]

x[k,1]

x[k,2]

x[k,3]

-j
-1

j

-1

-1

j
-1

-j

RAM RAM

ROM

FFT Engine

BFPU
FFT MegaCore Function User Guide © November 2009 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 3: Functional Description 3–7
I/O Data Flow Architectures
Figure 3–4 shows the input flow control. When the final sample is loaded, the source
asserts sink_eop and sink_valid for the last data transfer.

To change direction on a block-by-block basis, assert or deassert inverse
(appropriately) simultaneously with the application of the sink_sop pulse
(concurrent with the first input data sample of the block).

When the FFT has completed the transform of the input block, it asserts source_valid
and outputs the complex transform domain data block in natural order. The FFT
function asserts source_sop to indicate the first output sample. Figure 3–5 shows
the output flow control.

Figure 3–3. FFT Streaming Data Flow Architecture Simulation Waveform

Figure 3–4. FFT Streaming Data Flow Architecture Input Flow Control

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid
source_sop
source_eop

EXP0 EXP1 EXP2 EXP3

clk
reset_n

sink_valid
sink_ready

sink_sop
inverse

sink_real
sink_imag

xr(0) xr(1) xr(2) xr(3) xr(4) xr(5) xr(6) xr(7)

xi(0) xi(1) xi(2) xi(3) xi(4) xi(5) xi(6) xi(7)

Figure 3–5. FFT Streaming Data Flow Architecture Output Flow Control

clk
source_real

source_imag
exponent_out
source_ready
source_valid
source_sop
source_eop

Xr[0] Xr[1] Xr[2] Xr[3] Xr[5] Xr[6] Xr[7] Xr[8] Xr[10] Xr[11] Xr[12]Xr[9]

Xi[0] Xi[1] Xi[2] Xi[3] Xi[5] Xi[6] Xi[7] Xi[8] Xi[11] Xi[12]

EXP0

Xi[4] Xi[9]

Xr[4]

Xi[10]
© November 2009 Altera Corporation FFT MegaCore Function User Guide

3–8 Chapter 3: Functional Description
I/O Data Flow Architectures
After N data transfers, source_eop is asserted to indicate the end of the output data
block (Figure 3–3 on page 3–7).

Enabling the Streaming FFT
The sink_valid signal must be asserted for source_valid to be asserted (and a
valid data output). To extract the final frames of data from the FFT, you need to
provide several frames where the sink_valid signal is asserted and apply the
sink_sop and sink_eop signals in accordance with the Avalon-ST specification.

Variable Streaming
The variable streaming architecture allows continuous streaming of input data and
produces a continuous stream of output data similar to the streaming architecture.

Change the Block Size
You change the size of the FFT on a block-by-block basis by changing the value of the
fftpts simultaneously with the application of the sink_sop pulse (concurrent with
the first input data sample of the block). fftpts uses a binary representation of the
size of the transform, therefore for a block with maximum transfer size of 1,024.
Table 3–2 shows the value of the fftpts signal and the equivalent transform size.

To change direction on a block-by-block basis, assert or de-assert inverse
(appropriately) simultaneously with the application of the sink_sop pulse
(concurrent with the first input data sample of the block). When the FFT has
completed the transform of the input block, it asserts source_valid and outputs the
complex transform domain data block. The FFT function asserts the source_sop to
indicate the first output sample. The order of the output data depends on the output
order that you select in IP Toolbench. The output of the FFT may be in natural order or
bit-reversed order. Figure 3–6 shows the output flow control when the output order is
bit-reversed. If the output order is natural order, data flow control remains the same,
but the order of samples at the output is in sequential order 1..N.

Table 3–2. fftpts and Transform Size

fftpts Transform Size

10000000000 1,024

01000000000 512

00100000000 256

00010000000 128

00001000000 64

Figure 3–6. Output Flow Control—Bit Reversed Order

clock

source_sop

source_eop

source_valid

source_ready

source_real

source_imag

x0 x512 x256 x768 x128 x640 x384 x896

x0 x512 x256 x768 x128 x640 x384 x896

x1023

x1023
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 3: Functional Description 3–9
I/O Data Flow Architectures
Enabling the Variable Streaming FFT
The FFT processes data when there is valid data transferred to the module
(sink_valid asserted). Figure 3–7 shows the FFT behavior when sink_valid is
de-asserted.

When sink_valid is de-asserted during a frame, the FFT stalls and no data is
processed until sink_valid is reasserted. This implies that any previous frames that
are still in the FFT also stall.

If sink_valid is de-asserted between frames, the data currently in the FFT continues
to be processed and transferred to the output. Figure 3–7 shows the FFT behavior
when sink_valid is de-asserted between frames and within a frame.

The FFT may optionally be disabled by deasserting the clk_en signal.

Dynamically Changing the FFT Size
When the size of the incoming FFT changes, the FFT stalls the incoming data
(deasserts the sink_ready signal) until all of the previous FFT frames of the
previous FFT size have been processed and transferred to the output. Figure 3–8
shows dynamically changing the FFT size for engine-only mode.

Figure 3–7. FFT Behavior When sink_valid is Deasserted

Clock

Frame 1 Frame 2

Input Data

The input data stops,
but the output continues

Output Data

sink_valid

source_valid

When the FFT is stopped within
a frame, the output pauses

Figure 3–8. Dynamically Changing the FFT Size

clock

reset_n

sink_valid

sink_ready

sink_sop

sink_eop

inverse

sink_real

sink_imag

source_real

source_imag

source_ready

source_valid

source_sop

source_eop

 fftps
© November 2009 Altera Corporation FFT MegaCore Function User Guide

3–10 Chapter 3: Functional Description
I/O Data Flow Architectures
The Effect of I/O Order
The order of samples entering and leaving the FFT is determined by the wizard
selection in the I/O order panel. This selection also determines if the FFT is operating
in engine-only mode or engine with bit-reversal mode.

If the FFT operates in engine-only mode, the output data is available after
approximately N + latency clocks cycles after the first sample was input to the FFT.
Latency represents a small latency through the FFT core and is dependant on the
transform size.

For engine with bit-reversal mode, the output is available after approximately 2N +
latency cycles. Figure 3–9 and 3–10 show the data flow output when the FFT is
operating in engine-only mode and engine with bit-reversal mode respectively.

Buffered Burst
The buffered burst I/O data flow architecture FFT requires fewer memory resources
than the streaming I/O data flow architecture, but the tradeoff is an average block
throughput reduction.

Figure 3–11 on page 3–11 shows an example simulation waveform.

Figure 3–9. Data Flow—Engine-Only Mode

Figure 3–10. Data Flow—Engine with Bit-Reversal Mode

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop
sink_real

sink_imag
source_real

source_imag
source_valid
source_sop
source_eop

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop
sink_real

sink_imag
source_real

source_imag
source_valid
source_sop
source_eop
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 3: Functional Description 3–11
I/O Data Flow Architectures
Following the de-assertion of the system reset, the data source asserts sink_valid to
indicate to the FFT function that valid data is available for input. A successful data
transfer occurs when both the sink_valid and the sink_ready are asserted.

The data source loads the first complex data sample into the FFT function and
simultaneously asserts sink_sop to indicate the start of the input block. On the next
clock cycle, sink_sop is de-asserted and the following N – 1 complex input data
samples should be loaded in natural order. On the last complex data sample,
sink_eop should be asserted.

When the input block is loaded, the FFT function begins computing the transform on
the stored input block. The sink_ready signal is held high as you can transfer the
first few samples of the subsequent frame into the small FIFO at the input. If this FIFO
is filled, the core deasserts the sink_ready signal. It is not mandatory to transfer
samples during sink_ready cycles. Figure 3–12 shows the input flow control.

Following the interval of time where the FFT processor reads the input samples from
an internal input buffer, it re-asserts sink_ready indicating it is ready to read in the
next input block. The beginning of the subsequent input block should be demarcated
by the application of a pulse on sink_sop aligned in time with the first input sample
of the next block.

As in all data flow architectures, the logical level of inverse for a particular block is
registered by the FFT function at the time of the assertion of the start-of-packet signal,
sink_sop.

Figure 3–11. FFT Buffered Burst Data Flow Architecture Simulation Waveform

clk
reset_n

sink_vaild
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid
source_sop
source_eop

-13609 -47729 271 31221 -21224

-13609 -47729 271 31221 -21224

EXP3EXP2EXP1EXP0

Figure 3–12. FFT Buffered Burst Data Flow Architecture Input Flow Control

clk
reset_n

sink_valid
sink_ready

sink_sop
inverse

sink_real
sink_imag

xr(0) xr(1) xr(2) xr(3) xr(4) xr(5) xr(6) xr(7) xr(8) xr(9)

xi(0) xi(1) xi(2) xi(3) xi(4) xi(5) xi(6) xi(7) xi(8) xi(9)
© November 2009 Altera Corporation FFT MegaCore Function User Guide

3–12 Chapter 3: Functional Description
I/O Data Flow Architectures
When the FFT has completed the transform of the input block, it asserts the
source_valid and outputs the complex transform domain data block in natural order
(Figure 3–13).

Signals source_sop and source_eop indicate the start-of-packet and end-of-packet
for the output block data respectively (Figure 3–11).

1 The sink_valid signal must be asserted for source_valid to be asserted (and a
valid data output). You must therefore leave sink_valid signal asserted at the end
of data transfers to extract the final frames of data from the FFT.

f For information about enabling the buffered burst FFT, refer to “Enabling the
Streaming FFT” on page 3–8.

Burst
The burst I/O data flow architecture operates similarly to the buffered burst
architecture, except that the burst architecture requires even lower memory resources
for a given parameterization at the expense of reduced average throughput.
Figure 3–14 shows the simulation results for the burst architecture. Again, the signals
source_valid and sink_ready indicate, to the system data sources and slave
sinks either side of the FFT, when the FFT can accept a new block of data and when a
valid output block is available on the FFT output.

Figure 3–13. FFT Buffered Burst Data Flow Architecture Output Flow Control

clk
source_realt
source_imag

source_exp
source_ready

master_source_valid
source_sop
source_eop

EXP0

Xr[0] Xr[1] Xr[2] Xr[3] Xr[4] Xr[5] Xr[6] Xr[7] Xr[8] Xr[9] Xr[10]

Xi[0] Xi[1] Xi[2] Xi[3] Xi[4] Xi[5] Xi[6] Xi[7] Xi[8] Xi[9] Xi[10]

Figure 3–14. FFT Burst Data Flow Architecture Simulation Waveform

-47729 271

-47729 271

EXP0 EXP1 EXP2

clk
reset_n

sink_valid
sink_ready

sink_sop
sink_eop

inverse
sink_real

sink_imag
source_real

source_imag
source_exp

source_ready
source_valid
source_sop
source_eop
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 3: Functional Description 3–13
Parameters
In a burst I/O data flow architecture, the core can process a single input block only.
There is a small FIFO buffer at the sink of the block and sink_ready is not
deasserted until this FIFO buffer is full. Thus you can provide a small number of
additional input samples associated with the subsequent input block. It is not
mandatory to provide data to the FFT during sink_ready cycles. The burst
architecture can load the rest of the subsequent FFT frame only when the previous
transform has been fully unloaded.

f For information about enabling the buffered burst FFT, refer to “Enabling the
Streaming FFT” on page 3–8.

Parameters
Table 3–3 shows the FFT MegaCore function’s parameters.

Table 3–3. Parameters (Part 1 of 2)

Parameter Value Description

Target Device Family <device family> Displays the target device family. The device family is normally
preselected by the project specified in the Quartus II software.

The generated HDL for your MegaCore function variation may
be incorrect if this value does not match the value specified in
the Quartus II project.

The device family must be the same as your Quartus II project
device family.

Transform Length 64, 128, 256, 512,
1024, 2048, 4096,
8192, 16384. Variable
streaming also allows
16, 32, 32768, and
65536.

The transform length. For variable streaming, this value is the
maximum FFT length.

Data Precision 8, 10, 12, 14, 16, 18,
20, 24, 28, 32

The data precision. The values 28 and 32 are available for
variable streaming only.

Twiddle Precision 8, 10, 12, 14, 16, 18,
20, 24, 28, 32

The twiddle precision. Twiddle factor precision must be less
than or equal to data precision.

FFT Engine Architecture Quad Output,
Single Output

For both the Buffered Burst and Burst I/O data flow
architectures, you can choose between one, two, and four
quad-output FFT engines working in parallel. Alternatively, if
you have selected a single-output FFT engine architecture, you
may choose to implement one or two engines in parallel.
Multiple parallel engines reduce the FFT MegaCore function’s
transform time at the expense of device resources—which
allows you to select the desired area and throughput trade-off
point.

For more information about device resource and transform
time trade-offs, refer to ““Parameters” on page 3–13. Not
available for variable streaming.

Number of Parallel FFT Engines 1, 2, 4

I/O Data Flow Streaming
Variable Streaming
Buffered Burst
Burst

Choose the FFT architecture.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

3–14 Chapter 3: Functional Description
Parameters
I/O Order Bit Reverse Order,
Natural Order,
–N/2 to N/2

The input and output order for data entering and leaving the
FFT (variable streaming architecture only).

Data Representation Fixed Point or Floating
Point

The internal data representation type (variable streaming
architecture only), either fixed point with natural bit-growth or
single precision floating point.

Structure 3 Mults/5 Adders
4 Mults/2 Adders

You can implement the complex multiplier structure with four
real multipliers and two adders/subtracters, or three
multipliers, five adders, and some additional delay elements.
The 4 Mults/2 Adders structure uses the DSP block structures
to minimize logic usage, and maximize the DSP block usage.
This option may also improve the push button fMAX. The
5 Mults/3 Adders structure requires fewer DSP blocks, but
more LEs to implement. It may also produce a design with a
lower fMAX. Not available for variable streaming.

Implement Multipliers in DSP Blocks/Logic Cells
Logic Cells Only
DSP Blocks Only

Each real multiplication can be implemented in DSP blocks or
LEs only, or using a combination of both. If you use a
combination of DSP blocks and LEs, the FFT MegaCore
function automatically extends the DSP block 18 × 18
multiplier resources with LEs as needed. Not valid for variable
streaming.

Global clock enable On or Off Turn on if you want to add a global clock enable to your design.

Twiddle ROM Distribution 100% M4K to 100%
M512 or 100% M9K to
100% MLAB

High-throughput FFT parameterizations can require multiple
shallow ROMs for twiddle factor storage. If your target device
family supports M512 RAM blocks (or MLAB blocks in Stratix
III devices), you can choose to distribute the ROM storage
requirement between M4K (M9K) RAM and M512 (MLAB)
RAM blocks by adjusting the slider bar. Set the slider bar to the
far left to implement the ROM storage completely in M4K
(M9K) RAM blocks; set the slider bar to the far right to
implement the ROM completely in M512 (MLAB) RAM blocks.

Implementing twiddle ROM in M512 (MLAB) RAM blocks can
lead to a more efficient device internal memory bit usage.
Alternatively, this option can be used to conserve M4K (M9K)
RAM blocks used for the storage of FFT data or other storage
requirements in your system.

Not available for variable streaming.

Use M-RAM or M144K blocks On or Off Implements suitable data RAM blocks within the FFT MegaCore
function in M-RAM (M144K in Stratix III devices) to reduce
M4K (M9K) RAM block usage, in device families that support
M-RAM blocks.

Not available for variable streaming.

Implement appropriate logic
functions in RAM

On or Off Uses embedded RAM blocks to implement internal logic
functions, for example, tapped delay lines in the FFT MegaCore
function. This option reduces the overall logic element count.

Not available for variable streaming.

Table 3–3. Parameters (Part 2 of 2)

Parameter Value Description
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Chapter 3: Functional Description 3–15
Signals
Signals
Table 3–4 shows the Avalon-ST interface signals.

f For more information about the Avalon-ST interface, refer to the Avalon Streaming
Interface Specification.

Table 3–4. Avalon-ST Signals (Part 1 of 2)

Signal Name Direction Avalon-ST Type Size Description

clk Input clk 1 Clock signal that clocks all internal FFT engine
components.

reset_n Input reset_n 1 Active-low asynchronous reset signal.

sink_eop Input endofpacket 1 Indicates the end of the incoming FFT frame.

sink_error Input error 2 Indicates an error has occurred in an upstream
module, because of an illegal usage of the
Avalon-ST protocol. The following errors are
defined (refer to Table 3–6):

■ 00 = no error

■ 01 = missing start of packet (SOP)

■ 10 = missing end of packet (EOP)

■ 11 = unexpected EOP

If this signal is not used in upstream modules, set
to zero.

sink_imag Input data data precision
width

Imaginary input data, which represents a signed
number of data precision bits.

sink_ready Output ready 1 Asserted by the FFT engine when it can accept
data. It is not mandatory to provide data to the FFT
during ready cycles.

sink_real Input data data precision
width

Real input data, which represents a signed
number of data precision bits.

sink_sop Input startofpacket 1 Indicates the start of the incoming FFT frame.

sink_valid Input valid 1 Asserted when data on the data bus is valid. When
sink_valid and sink_ready are asserted,
a data transfer takes place. Refer to “Enabling the
Variable Streaming FFT” on page 3–9.

source_eop Output endofpacket 1 Marks the end of the outgoing FFT frame. Only
valid when source_valid is asserted.

source_error Output error 2 Indicates an error has occurred either in an
upstream module or within the FFT module
(logical OR of sink_error with errors
generated in the FFT). Refer to Table 3–6 for error
codes.

source_exp Output data 6 Streaming, burst, and buffered burst architectures
only. Signed block exponent: Accounts for scaling
of internal signal values during FFT computation.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

3–16 Chapter 3: Functional Description
Signals
Table 3–5 shows the component specific signals.

Incorrect usage of the Avalon-ST interface protocol on the sink interface results in a
error on source_error. Table 3–6 defines the behavior of the FFT when an incorrect
Avalon-ST transfer is detected. If an error occurs, the behavior of the FFT is undefined
and you must reset the FFT with reset_n.

source_imag Output data (data precision
width + growth)
(1)

Imaginary output data. For burst, buffered burst,
and streaming FFTs, the output data width is equal
to the input data width. For variable streaming
FFTs, the size of the output data is dependent on
the number of stages defined for the FFT and is
approximately 2.5 bits per radix 22 stage.

source_ready Input ready 1 Asserted by the downstream module if it is able to
accept data.

source_real Output data (data precision
width + growth)
(1)

Real output data. For burst, buffered burst, and
streaming FFTs, the output data width is equal to
the input data width. For variable streaming FFTs,
the size of the output data is dependent on the
number of stages defined for the FFT and is
approximately 2.5 bits per radix 22 stage.

source_sop Output startofpacket 1 Marks the start of the outgoing FFT frame. Only
valid when source_valid is asserted.

source_valid Output valid 1 Asserted by the FFT when there is valid data to
output.

Note to Table 3–4:

(1) Variable streaming FFT only. Growth is 2.5 × (number of stages) = 2.5 × (log4(MAX(fftpts))

Table 3–4. Avalon-ST Signals (Part 2 of 2)

Signal Name Direction Avalon-ST Type Size Description

Table 3–5. Component Specific Signals

Signal Name Direction Size Description

fftpts_in Input log2(maximum
number of points)

The number of points in this FFT frame. If this value is not specified, the
FFT can not be a variable length. The default behavior is for the FFT to
have fixed length of maximum points. Only sampled at SOP.

fftpts_out Output log2(maximum
number of points)

The number of points in this FFT frame synchronized to the Avalon-ST
source interface. Variable streaming only.

inverse Input 1 Inverse FFT calculated if asserted. Only sampled at SOP.

clk_ena Input 1 Active-high global clock enable input. If de-asserted, the FFT is disabled.

Table 3–6. Error Handling Behavior

Error source_error Description

Missing SOP 01 Asserted when valid goes high, but there is no start of frame.

Missing EOP 10 Asserted if the FFT accepts N valid samples of an FFT frame, but there is no EOP signal.

Unexpected EOP 11 Asserted if EOP is asserted before N valid samples are accepted.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

© November 2009 Altera Corporation
A. Block Floating Point Scaling
Introduction
The FFT MegaCore® function uses block-floating-point (BFP) arithmetic internally to
perform calculations. BFP architecture is a trade-off between fixed-point and full
floating-point architecture.

Unlike an FFT block that uses floating point arithmetic, a block-floating-point FFT
block does not provide an input for exponents. Internally, a complex value integer
pair is represented with a single scale factor that is typically shared among other
complex value integer pairs. After each stage of the FFT, the largest output value is
detected and the intermediate result is scaled to improve the precision. The exponent
records the number of left or right shifts used to perform the scaling. As a result, the
output magnitude relative to the input level is:

output*2-exponent

For example, if exponent = –3, the input samples are shifted right by three bits, and
hence the magnitude of the output is output*23.

Block Floating Point
After every pass through a radix-2 or radix-4 engine in the FFT core, the addition and
multiplication operations cause the data bits width to grow. In other words, the total
data bits width from the FFT operation grows proportionally to the number of passes.
The number of passes of the FFT/IFFT computation depends on the logarithm of the
number of points. Table A–1 on page A–2 shows the possible exponents for
corresponding bit growth.

A fixed-point architecture FFT needs a huge multiplier and memory block to
accommodate the large bit width growth to represent the high dynamic range.
Though floating-point is powerful in arithmetic operations, its power comes at the
cost of higher design complexity such as a floating-point multiplier and a floating-
point adder. BFP arithmetic combines the advantages of floating-point and fixed-
point arithmetic. BFP arithmetic offers a better signal-to-noise ratio (SNR) and
dynamic range than does floating-point and fixed-point arithmetic with the same
number of bits in the hardware implementation.

In a block-floating-point architecture FFT, the radix-2 or radix-4 computation of each
pass shares the same hardware, with the data being read from memory, passed
through the core engine, and written back to memory. Before entering the next pass,
each data sample is shifted right (an operation called "scaling") if there is a carry-out
bit from the addition and multiplication operations. The number of bits shifted is
based on the difference in bit growth between the data sample and the maximum data
sample detected in the previous stage. The maximum bit growth is recorded in the
exponent register. Each data sample now shares the same exponent value and data bit
width to go to the next core engine. The same core engine can be reused without
incurring the expense of a larger engine to accommodate the bit growth.
FFT MegaCore Function User Guide

A–2 Appendix A: Block Floating Point Scaling
Calculating Possible Exponent Values
The output SNR depends on how many bits of right shift occur and at what stages of
the radix core computation they occur. In other words, the signal-to-noise ratio is data
dependent and you need to know the input signal to compute the SNR.

Calculating Possible Exponent Values
Depending on the length of the FFT/IFFT, the number of passes through the radix
engine is known and therefore the range of the exponent is known. The possible
values of the exponent are determined by the following equations:

P = ceil{log4N}, where N is the transform length

R = 0 if log2N is even, otherwise R = 1

Single output range = (–3P+R, P+R–4)

Quad output range = (–3P+R+1, P+R–7)

These equations translate to the values in Table A–1.

Implementing Scaling
To implement the scaling algorithm, follow these steps:

1. Determine the length of the resulting full scale dynamic range storage register. To
get the length, add the width of the data to the number of times the data is shifted
(the max value in Table A–1). For example, for a 16-bit data, 256-point Quad
Output FFT/IFFT with Max = –11 and Min = –3. The Max value indicates 11 shifts
to the left, so the resulting full scaled data width is 16 + 11, or 27 bits.

Table A–1. Exponent Scaling Values for FFT / IFFT (Note 1)

N P

Single Output Engine Quad Output Engine

Max (2) Min (2) Max (2) Min (2)

64 3 –9 –1 –8 –4

128 4 –11 1 –10 –2

256 4 –12 0 –11 –3

512 5 –14 2 –13 –1

1,024 5 –15 1 –14 –2

2,048 6 –17 3 –16 0

4,096 6 –18 2 –17 –1

8,192 7 –20 4 –19 1

16,384 7 –21 3 –20 0

Note to Table A–1:

(1) This table lists the range of exponents, which is the number of scale events that occurred internally. For IFFT, the
output must be divided by N externally. If more arithmetic operations are performed after this step, the division by
N must be performed at the end to prevent loss of precision.

(2) The maximum and minimum values show the number of times the data is shifted. A negative value indicates shifts
to the left, while a positive value indicates shifts to the right.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Appendix A: Block Floating Point Scaling A–3
Implementing Scaling
2. Map the output data to the appropriate location within the expanded dynamic
range register based upon the exponent value. To continue the above example, the
16-bit output data [15..0] from the FFT/IFFT is mapped to [26..11] for an exponent
of –11, to [25..10] for an exponent of –10, to [24..9] for an exponent of –9, and so on.

3. Sign extend the data within the full scale register.

A sample of Verilog HDL code that illustrates the scaling of the output data (for
exponents –11 to –9) with sign extension is shown in the following example:

case (exp)
6'b110101 : //-11 Set data equal to MSBs

begin
full_range_real_out[26:0] <= {real_in[15:0],11'b0};
full_range_imag_out[26:0] <= {imag_in[15:0],11'b0};

end
6'b110110 : //-10 Equals left shift by 10 with sign extension

begin
full_range_real_out[26] <= {real_in[15]};
full_range_real_out[25:0] <= {real_in[15:0],10'b0};
full_range_imag_out[26] <= {imag_in[15]};
full_range_imag_out[25:0] <= {imag_in[15:0],10'b0};

end
6'b110111 : //-9 Equals left shift by 9 with sign extension

begin
full_range_real_out[26:25] <= {real_in[15],real_in[15]};
full_range_real_out[24:0] <= {real_in[15:0],9'b0};
full_range_imag_out[26:25] <= {imag_in[15],imag_in[15]};
full_range_imag_out[24:0] <= {imag_in[15:0],9'b0};

end
.
.
.

endcase

In this example, the output provides a full scale 27-bit word. You need to choose how
many and which bits should be carried forward in the processing chain. The choice of
bits determines the absolute gain relative to the input sample level.

Figure A–1 on page A–4 demonstrates the effect of scaling for all possible values for
the 256-point quad output FFT with an input signal level of 5000H. The output of the
FFT is 280H when the exponent = –5. The figure illustrates all cases of valid exponent
values of scaling to the full scale storage register [26..0]. Since the exponent is –5, you
need to look at the register values for that column. This data is shown in the last two
columns in the figure. Note that the last column represents the gain compensated data
after the scaling (0005000H), which agrees with the input data as expected. If you
want to keep 16 bits for subsequent processing, you can choose the bottom 16 bits that
result in 5000H. However, if you choose a different bit range, such as the top 16 bits,
the result is 000AH. Therefore, the choice of bits affects the relative gain through the
processing chain.

Because this example has 27 bits of full scale resolution and 16 bits of output
resolution, choose the bottom 16 bits to maintain unity gain relative to the input
signal. Choosing the LSBs is not the only solution or the correct one for all cases. The
choice depends on which signal levels are important. One way to empirically select
the proper range is by simulating test cases that implement expected system data. The
output of the simulations should tell what range of bits to use as the output register. If
the full scale data is not used (or just the MSBs), you must saturate the data to avoid
wraparound problems.
© November 2009 Altera Corporation FFT MegaCore Function User Guide

A–4 Appendix A: Block Floating Point Scaling
Achieving Unity Gain in an IFFT+FFT Pair
Achieving Unity Gain in an IFFT+FFT Pair
Given sufficiently high precision, such as with floating-point arithmetic, it is
theoretically possible to obtain unity gain when an IFFT and FFT are cascaded.
However, in BFP arithmetic, special attention must be paid to the exponent values of
the IFFT/FFT blocks to achieve the unity gain. This section explains the steps required
to derive a unity gain output from an Altera IFFT/FFT MegaCore pair, using BFP
arithmetic.

Because BFP arithmetic does not provide an input for the exponent, you must keep
track of the exponent from the IFFT block if you are feeding the output to the FFT
block immediately thereafter and divide by N at the end to acquire the original signal
magnitude.

Figure A–2 on page A–5 shows the operation of IFFT followed by FFT and derives the
equation to achieve unity gain.

Figure A–1. Scaling of Input Data Sample = 5000H
FFT MegaCore Function User Guide © November 2009 Altera Corporation

Appendix A: Block Floating Point Scaling A–5
Achieving Unity Gain in an IFFT+FFT Pair
where:

x0 = Input data to IFFT

X0 = Output data from IFFT

N = number of points

data1 = IFFT output data and FFT input data

data2 = FFT output data

exp1 = IFFT output exponent

exp2 = FFT output exponent

IFFTa = IFFT

FFTa = FFT

Any scaling operation on X0 followed by truncation loses the value of exp1 and does
not result in unity gain at x0. Any scaling operation must be done on X0 only when it
is the final result. If the intermediate result X0 is first padded with exp1 number of
zeros and then truncated or if the data bits of X0 are truncated, the scaling information
is lost.

One way to keep unity gain is by passing the exp1 value to the output of the FFT
block. The other way is to preserve the full precision of data1×2–exp1 and use this
value as input to the FFT block. The disadvantage of the second method is a large size
requirement for the FFT to accept the input with growing bit width from IFFT
operations. The resolution required to accommodate this bit width will, in most cases,
exceed the maximum data width supported by the core.

f For more information, refer to the Achieving Unity Gain in Block Floating Point
IFFT+FFT Pair design example under DSP Design Examples at www.altera.com.

Figure A–2. Derivation to Achieve IFFT/FFT Pair Unity Gain

 IFFT

x0 X0 = IFFT(x0)

 =
N

1
× IFFTa(x0)

 =
N

1
× data1 × 2–exp1

 FFT

x0 = FFT(X0)

 = FFT(
N

1
 × data1 × 2–exp1)

 =
N

1
× 2–exp1× FFTa(data1)

 =
N

1
× 2–exp1× data2 × 2–exp2

 =
N

1
× 2 –exp2–exp1 × data2
© November 2009 Altera Corporation FFT MegaCore Function User Guide

A–6 Appendix A: Block Floating Point Scaling
Achieving Unity Gain in an IFFT+FFT Pair
FFT MegaCore Function User Guide © November 2009 Altera Corporation

© November 2009 Altera Corporation
Additional Information
Revision History
The following table shows the revision history for this user guide.

How to Contact Altera
For the most up-to-date information about Altera® products, refer to the following
table.

Date Version Changes Made

November 2009 9.1 ■ Maintenance update.

■ Added preliminary support for Cyclone III LS, Cyclone IV, and HardCopy IV GX devices.

March 2009 9.0 Added Arria® II GX device support.

November 2008 8.1 No changes.

May 2008 8.0 ■ Added Stratix® IV device support.

■ Changed descriptions of the behavior of sink_valid and sink_ready.

October 2007 7.2 ■ Corrected timing diagrams.

■ Added single precision floating point data representation information.

May 2007 7.1 ■ Added support for Arria™ GX devices.

■ Added new generated files.

December 2006 7.0 Added support for Cyclone® III devices.

December 2006 6.1 ■ Changed interface information.

■ Added variable streaming information.

Contact (Note 1)
Contact
Method Address

Technical support Website www.altera.com/support

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative.
FFT MegaCore Function User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example: AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. Example: resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

r The angled arrow instructs you to press the enter key.

f The feet direct you to more information about a particular topic.
FFT MegaCore Function User Guide © November 2009 Altera Corporation

	FFT MegaCore Function User Guide
	Contents
	1. About This MegaCore Function
	Release Information
	Device Family Support
	Features
	General Description
	Fixed Transform Size Architecture
	Variable Streaming Architecture

	MegaCore Verification
	Performance and Resource Utilization
	Cyclone III Devices
	Stratix III Devices
	Stratix IV Devices

	Installation and Licensing
	OpenCore Plus Evaluation
	OpenCore Plus Time-Out Behavior

	2. Getting Started
	Design Flows
	DSP Builder Flow
	MegaWizard Plug-In Manager Flow
	Parameterize the MegaCore Function
	Set Up Simulation
	Generate the MegaCore Function

	Simulate the Design
	Simulate in the MATLAB Software
	Simulate with IP Functional Simulation Models
	Simulating in Third-Party Simulation Tools Using NativeLink

	Compile the Design
	Fixed Transform Architecture
	Variable Streaming Architecture

	Program a Device

	3. Functional Description
	Buffered, Burst, & Streaming Architectures
	Variable Streaming Architecture
	The Avalon Streaming Interface
	FFT Processor Engine Architectures
	Radix-22 Single Delay Feedback Architecture
	Quad-Output FFT Engine Architecture
	Single-Output FFT Engine Architecture

	I/O Data Flow Architectures
	Streaming
	Variable Streaming
	Buffered Burst
	Burst

	Parameters
	Signals

	A. Block Floating Point Scaling
	Introduction
	Block Floating Point
	Calculating Possible Exponent Values
	Implementing Scaling
	Achieving Unity Gain in an IFFT+FFT Pair

	Additional Information
	Revision History
	How to Contact Altera
	Typographic Conventions

