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1. About This MegaCore Function
Release Information
Table 1–1 provides information about this release of the Altera® FFT MegaCore® 
function.

f For more information about this release, refer to the MegaCore IP Library Release Notes 
and Errata.

Altera verifies that the current version of the Quartus® II software compiles the 
previous version of each MegaCore® function. The MegaCore IP Library Release Notes 
and Errata report any exceptions to this verification. Altera does not verify 
compilation with MegaCore function versions older than one release.

Device Family Support
MegaCore functions provide either full or preliminary support for target Altera 
device families:

■ Full support means the MegaCore function meets all functional and timing 
requirements for the device family and may be used in production designs

■ Preliminary support means the MegaCore function meets all functional 
requirements, but may still be undergoing timing analysis for the device family; it 
may be used in production designs with caution.

Table 1–2 shows the level of support offered by the FFT MegaCore function to each of 
the Altera device families.

Table 1–1. Product Name Release Information

Item Description

Version 9.1

Release Date November 2009

Ordering Code IP-FFT

Product ID 0034

Vendor ID 6AF7 

Table 1–2. Device Family Support (Part 1 of 2)

Device Family Support

Arria™ GX Full

Arria II GX Preliminary

Cyclone® Full

Cyclone II Full

Cyclone III Full

Cyclone III LS Preliminary
FFT MegaCore Function User Guide
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1–2 Chapter 1: About This MegaCore Function
Features
Features
■ Bit-accurate MATLAB models

■ Enhanced variable streaming FFT: 

■ Single precision floating point or fixed point representation

■ Input and output orders include natural order, bit reversed, and DC-centered 
(–N/2 to N/2)

■ Reduced memory requirements

■ Support for 8 to 32-bit data and twiddle width

■ Radix-4 and mixed radix-4/2 implementations

■ Block floating-point architecture—maintains the maximum dynamic range of data 
during processing (not for variable streaming)

■ Uses embedded memory

■ Maximum system clock frequency >300 MHz

■ Optimized to use Stratix series DSP blocks and TriMatrix™ memory 
architecture

■ High throughput quad-output radix 4 FFT engine 

■ Support for multiple single-output and quad-output engines in parallel

■ Multiple I/O data flow modes: streaming, buffered burst, and burst

■ Avalon® Streaming (Avalon-ST) compliant input and output interfaces

■ Parameterization-specific VHDL and Verilog HDL testbench generation

■ Transform direction (FFT/IFFT) specifiable on a per-block basis

■ Easy-to-use IP Toolbench interface

■ IP functional simulation models for use in Altera-supported VHDL and Verilog 
HDL simulators

Cyclone IV Preliminary

HardCopy® II Full

HardCopy III Preliminary

HardCopy IV E Preliminary

HardCopy IV GX Preliminary

Stratix® Full

Stratix II Full

Stratix II GX Full

Stratix III Full

Stratix IV Preliminary

Stratix GX Full

Table 1–2. Device Family Support (Part 2 of 2)

Device Family Support
FFT MegaCore Function User Guide © November 2009 Altera Corporation



Chapter 1: About This MegaCore Function 1–3
General Description
■ DSP Builder ready

f For information about Avalon-ST interfaces, refer to the Avalon Interface Specifications.

General Description
The FFT MegaCore function is a high performance, highly-parameterizable Fast 
Fourier transform (FFT) processor. The FFT MegaCore function implements a 
complex FFT or inverse FFT (IFFT) for high-performance applications.

The FFT MegaCore function implements the following architectures:

■ Fixed transform size architecture

■ Variable streaming architecture

Fixed Transform Size Architecture
The fixed transform architecture FFT implements a radix-2/4 decimation-in-
frequency (DIF) FFT fixed-transform size algorithm for transform lengths of 2m where 
6  m 14. This architecture uses block-floating point representations to achieve the 
best trade-off between maximum signal-to-noise ratio (SNR) and minimum size 
requirements.

The fixed transform architecture accepts as an input a two’s complement format 
complex data vector of length N, where N is the desired transform length in natural 
order; the function outputs the transform-domain complex vector in natural order. An 
accumulated block exponent is output to indicate any data scaling that has occurred 
during the transform to maintain precision and maximize the internal signal-to-noise 
ratio. Transform direction is specifiable on a per-block basis via an input port. 

Variable Streaming Architecture
The variable streaming architecture FFT implements a radix-22 single delay feedback 
architecture, which you can configure during runtime to perform FFT algorithm for 
transform lengths of 2m where 4 m 16. This architecture uses either a fixed-point 
representation or a single precision floating point representation. 

The fixed-point representation grows the data widths naturally from input through to 
output thereby maintaining a high SNR at the output. The single precision floating 
point representation allows a large dynamic range of values to be represented while 
maintaining a high SNR at the output.

f For more information about radix-22 single delay feedback architecture, refer to S. He 
and M. Torkelson, A New Approach to Pipeline FFT Processor, Department of Applied 
Electronics, Lund University, IPPS 1996.

The order of the input data vector of size N can be natural, bit reversed, or –N/2 to 
N/2 (DC-centered). The architecture outputs the transform-domain complex vector in 
natural or bit-reversed order. The transform direction is specifiable on a per-block 
basis using an input port.
© November 2009 Altera Corporation FFT MegaCore Function User Guide
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1–4 Chapter 1: About This MegaCore Function
MegaCore Verification
MegaCore Verification
Before releasing a version of the FFT MegaCore function, Altera runs comprehensive 
regression tests to verify its quality and correctness.

Custom variations of the FFT MegaCore function are generated to exercise its various 
parameter options, and the resulting simulation models are thoroughly simulated 
with the results verified against master simulation models.

Performance and Resource Utilization
Performance varies depending on the FFT engine architecture and I/O data flow. All 
data represents the geometric mean of a three seed Quartus II synthesis sweep.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers; 
Stratix III devices use combinational adaptive look-up tables (ALUTs) and logic 
registers.

Cyclone III Devices
Table 1–3 shows the streaming data flow performance, using the 4 multipliers / 2 
adders complex multiplier structure, for width 16, for Cyclone III (EP3C10F256C6) 
devices.

Table 1–4 shows the variable streaming data flow performance, with in order inputs 
and bit-reversed outputs, for width 16 (32 for floating point), for Cyclone III 
(EP3C16F484C6) devices.

1 The variable streaming with fixed-point number representation uses natural word 
growth, therefore the multiplier requirement is larger compared with the equivalent 
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–3. Performance with the Streaming Data Flow Engine Architecture—Cyclone III Devices

Points 
Combinational 

LUTs
Logic 

Registers
Memory

(Bits)
Memory 
(M9K)

9 × 9 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

256 3,425 3,880 39,168 20 24 236 256 1.08

1,024 3,837 4,575 155,904 20 24 237 1,024 4.33

4,096 (1) 5,941 6,313 622,848 76 48 232 4,096 17.68

Note to Table 1–3:

(1) EP3C40F780C6 device.

Table 1–4. Performance with the Variable Streaming Data Flow Engine Architecture—Cyclone III Devices

Point Type Points 
Combinational 

LUTs
Logic 

Registers
Memory 

(Bits)
Memory 
(M9K)

9 × 9 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

Fixed 256 3,976 4,173 10,309 17 48 190 256 1.35

Fixed 1,024 5,392 5,549 42,605 24 64 181 1,024 5.66
FFT MegaCore Function User Guide © November 2009 Altera Corporation



Chapter 1: About This MegaCore Function 1–5
Performance and Resource Utilization
Table 1–5 lists resource usage with buffered burst data flow architecture, using the 4 
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for 
Cyclone III (EP3C25F324C6) devices.

Table 1–6 lists performance with buffered burst data flow architecture, using the 4 
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for 
Cyclone III (EP3C25F324C6) devices.

Fixed 4,096 6,865 6,873 172,006 46 80 176 4,096 23.22

Floating (1) 256 27,323 19,619 22,132 66 96 113 256 2.27

Floating (2) 1,024 34,508 24,436 80,912 89 128 114 1,024 8.99

Floating (2) 4,096 41,774 29,294 311,724 135 160 113 4,096 36.38

Note to Table 1–4:

(1) EP3C40F780C6 device.
(2) EP3C55F780C6 device.

Table 1–4. Performance with the Variable Streaming Data Flow Engine Architecture—Cyclone III Devices

Point Type Points 
Combinational 

LUTs
Logic 

Registers
Memory 

(Bits)
Memory 
(M9K)

9 × 9 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

Table 1–5. Resource Usage with Buffered Burst Data Flow Architecture—Cyclone III Devices

Points 
Number of 
Engines (1)

Combinational 
LUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

9 × 9 
Blocks

fMAX

(MHz)

256 (2) 1 3,118 3,738 30,976 16 24 254

1,024 (2) 1 3,208 3,930 123,136 16 24 238

4,096 1 3,287 4,108 491,776 60 24 234

256 (3) 2 5,114 5,892 30,976 31 48 244

1,024 (3) 2 4,207 5,023 175,392 20 24 220

4,096 2 5,299 6,280 491,776 60 48 231

256 4 8,904 10,620 30,976 60 96 215

1,024 4 9,030 10,839 123,136 60 96 206

4,096 4 9,144 11,039 491,776 60 96 207

Notes to Table 1–5:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT MegaWizard interface.
(2) EP3C10F256C6 device.
(3) EP3C16F484C6 device.

Table 1–6. Performance with the Buffered Burst Data Flow Architecture—Cyclone III Devices (Part 1 of 2)

Points 
Number of 
Engines (1)

fMAX 
(MHz)

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 (4) 1 254 235 0.93 491 1.93 331 1.30

1,024 (4) 1 238 1,069 4.49 2,093 8.8 1,291 5.43

4,096 1 234 5,167 22.04 9,263 39.51 6157 26.26

256 (5) 2 244 162 0.66 397 1.63 299 1.23
© November 2009 Altera Corporation FFT MegaCore Function User Guide



1–6 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–7 lists resource usage with burst data flow architecture, using the 4 multipliers 
/2 adders complex multiplier structure, for data and twiddle width 16, for Cyclone III 
(EP3C10F256C6) devices.

1,024 (5) 2 220 557 2.53 1,581 7.18 1,163 5.28

4,096 2 231 2,607 11.28 6,703 29.01 5,133 22.22

256 4 215 118 0.55 347 1.61 283 1.32

1,024 4 206 340 1.65 1,364 6.61 1,099 5.33

4,096 4 207 1,378 6.64 5,474 26.38 4,633 22.33

Notes to Table 1–6:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT MegaWizard interface. You may 
choose from one, two, or four quad-output engines in parallel. 

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first 
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.
(4) EP3C10F256C6 device.
(5) EP3C16F484C6 device.

Table 1–6. Performance with the Buffered Burst Data Flow Architecture—Cyclone III Devices (Part 2 of 2)

Points 
Number of 
Engines (1)

fMAX 
(MHz)

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Table 1–7. Resource Usage with the Burst Data Flow Architecture—Cyclone III Devices 

Points 
Engine 

Architecture
Number of 
Engines (2)

Combinational 
LUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

9 × 9 
Blocks

256 Quad Output 1 3,110 3,672 14,592 8 24

1,024 Quad Output 1 4,207 5,023 175,392 20 24

4,096 Quad Output 1 3,278 4,022 229,632 28 24

256 Quad Output 2 5,093 5,824 14,592 15 48

1,024 Quad Output 2 5,189 6,016 57,600 15 48

4,096 Quad Output 2 5,270 6,192 229,632 28 48

256 Quad Output 4 8,906 10,556 14,592 28 96

1,024 Quad Output 4 9,017 10,765 57,600 28 96

4,096 Quad Output 4 9,128 10,955 229,632 28 96

256 Single Output 1 1,465 1,495 9,472 3 8

1,024 Single Output 1 1,528 1,541 37,120 6 8

4,096 Single Output 1 1,620 1,587 147,712 19 8

256 Single Output 2 2,079 2,406 14,592 9 16

1,024 Single Output 2 2,131 2,482 57,600 11 16

4,096 Single Output 2 2,194 2,558 229,632 28 16

Notes to Table 1–7:

(1) When using the burst data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from 
one to two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.
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Table 1–8 lists performance with burst data flow architecture, using the 4 multipliers 
/2 adders complex multiplier structure, for data and twiddle width 16, for Cyclone III 
(EP3C10F256C6) devices. 

Stratix III Devices
Table 1–9 shows the streaming data flow performance, using the 4 multipliers /2 
adders complex multiplier structure, for data and twiddle width 16, for Stratix III 
(EP3SE50F780C2) devices.

Table 1–10 shows the variable streaming data flow performance, with in order inputs 
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix III 
(EP3SE50F780C2) devices.

Table 1–8. Performance with the Burst Data Flow Architecture—Cyclone III Devices

Points 
Engine 

Architecture
Number of 
Engines (1)

fMAX 
(MHz)

Transform 
Calculation Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 243 235 0.97 491 2.02 331 1.36

1,024 Quad Output 1 233 1,069 4.59 2,093 8.98 1,291 5.54

4,096 Quad Output 1 235 5,167 21.97 9,263 39.39 6,157 26.18

256 Quad Output 2 232 162 0.70 397 1.71 299 1.29

1,024 Quad Output 2 221 557 2.52 1,581 7.14 1,163 5.25

4,096 Quad Output 2 234 2,607 11.13 6,703 28.61 5,133 21.91

256 Quad Output 4 223 118 0.53 374 1.68 283 1.27

1,024 Quad Output 4 214 340 1.59 1,364 6.36 1,099 5.12

4,096 Quad Output 4 210 1,378 6.55 5,474 26.01 4,633 22.02

256 Single Output 1 261 1,115 4.28 1,371 5.26 1,628 6.25

1,024 Single Output 1 237 5,230 22.02 6,344 26.72 7,279 30.65

4,096 Single Output 1 236 24,705 104.62 28,801 121.97 32,898 139.32

256 Single Output 2 246 585 2.38 841 3.42 1,098 4.47

1,024 Single Output 2 240 2,652 11.03 3,676 15.29 4,701 19.55

4,096 Single Output 2 241 12,329 51.18 16,495 68.47 20,605 85.53

Notes to Table 1–8:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from one to 
two single-output engines in parallel, or from one, two, or four quad-output engines in parallel. 

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output. 
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–9. Performance with the Streaming Data Flow Engine Architecture—Stratix III Devices

Points 
Combinational 

ALUTs
Logic 

Registers
Memory 

(Bits)
Memory 
(M9K)

18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

256 2,141 3,688 39,168 20 12 397 256 0.64

1,024 2,434 4,383 155,904 20 12 406 1,024 2.52

4,096 3,732 5,929 622,848 76 24 361 4,096 11.35
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1 The variable streaming with fixed-point number representation uses natural word 
growth, therefore the multiplier requirement is larger compared with the equivalent 
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–11 lists resource usage with buffered burst data flow architecture, using the 4 
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for 
Stratix III (EP3SE50F780C2) devices.

Table 1–10. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix III Devices

Point Type Points 
Combinational 

ALUTs
Logic 

Registers
Memory 

(Bits)
Memory 
(M9K)

18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

Fixed 256 2,539 3,910 10,193 14 24 335 256 0.76

Fixed 1,024 3,513 5,231 42,377 21 32 333 1,024 3.08

Fixed 4096 4,540 6,545 171,611 40 40 304 4,096 13.46

Floating 256 17,724 19,941 24,959 66 48 215 256 1.19

Floating 1,024 22,342 24,758 84,798 87 64 214 1,024 4.78

Floating (1) 4,096 27,325 29,709 316,579 136 80 214 4,096 19.12

Note to Table 1–10:

(1) EP3SL70F780C2 device.

Table 1–11. Resource Usage with Buffered Burst Data Flow Architecture—Stratix III Devices

Points 
Number of 
Engines (1)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX

(MHz)

256 1 1,996 3,546 30,976 16 12 406

1,024 1 2,040 3,738 123,136 16 12 404

4,096 1 2,082 3,917 491,776 60 12 392

256 2 3,345 5,508 30,976 31 24 378

1,024 2 3,383 5,711 123,136 31 24 379

4,096 2 3,425 5,896 491,776 60 24 380

256 4 5,871 9,854 30,976 60 48 347

1,024 4 5,935 10,071 123,136 60 48 340

4,096 4 6,009 10,271 491,776 60 48 325

Notes to Table 1–11:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT MegaWizard interface.
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Table 1–12 lists performance with buffered burst data flow architecture, using the 4 
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for 
Stratix III (EP3SE50F780C2) devices.

Table 1–13 lists resource usage with burst data flow architecture, using the 4 
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for 
Stratix III (EP3SE50F780C2) devices.

Table 1–12. Performance with the Buffered Burst Data Flow Architecture—Stratix III Devices

Points 
Number of 
Engines (1) fMAX (MHz)

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 406 235 0.58 491 1.21 331 0.81

1,024 1 404 1,069 2.64 2,093 5.17 1,291 3.19

4,096 1 392 5,167 13.19 9,263 23.65 6157 15.72

256 2 378 162 0.43 397 1.05 299 0.79

1,024 2 379 557 1.47 1,581 4.17 1,163 3.07

4,096 2 380 2,607 6.86 6,703 17.64 5,133 13.51

256 4 347 118 0.34 347 1.00 283 0.82

1,024 4 340 340 1.00 1,364 4.01 1,099 3.23

4,096 4 325 1,378 4.24 5,474 16.85 4,633 14.26

Notes to Table 1–12:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT MegaWizard interface. You may 
choose from one, two, or four quad-output engines in parallel. 

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first 
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–13. Resource Usage with the Burst Data Flow Architecture—Stratix III Devices (Part 1 of 2)

Points 
Engine 

Architecture
Number of 
Engines (2)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

256 Quad Output 1 1,849 3,480 14,592 8 12

1,024 Quad Output 1 1,891 3,662 57,600 8 12

4,096 Quad Output 1 1,926 3,830 229,632 28 12

256 Quad Output 2 3,065 5,440 14,592 15 24

1,024 Quad Output 2 3,107 5,632 57,600 15 24

4,096 Quad Output 2 3,154 5,808 229,632 28 24

256 Quad Output 4 5,355 9,788 14,592 28 48

1,024 Quad Output 4 5,410 9,997 57,600 28 48

4,096 Quad Output 4 5,483 10,187 229,632 28 48

256 Single Output 1 712 1,431 9,472 3 4

1,024 Single Output 1 749 1,477 37,120 6 4

4,096 Single Output 1 816 1,523 147,712 19 4

256 Single Output 1 1,024 2,278 14,592 9 8

1,024 Single Output 2 1,037 2,354 57,600 11 8
© November 2009 Altera Corporation FFT MegaCore Function User Guide



1–10 Chapter 1: About This MegaCore Function
Performance and Resource Utilization
Table 1–14 lists performance with burst data flow architecture, using the 4 multipliers 
/2 adders complex multiplier structure, for data and twiddle width 16, for Stratix III 
(EP3SE50F780C2) devices. 

4,096 Single Output 1 1,075 2,430 229,632 28 8

Notes to Table 1–13:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from 

one to two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

Table 1–13. Resource Usage with the Burst Data Flow Architecture—Stratix III Devices (Part 2 of 2)

Points 
Engine 

Architecture
Number of 
Engines (2)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

Table 1–14. Performance with the Burst Data Flow Architecture—Stratix III Devices

Points 
Engine 

Architecture

Number of 
Engines 

(1)
fMAX 
(MHz)

Transform 
Calculation Time (2)

Data Load & 
Transform Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 421 235 0.56 491 1.17 331 0.79

1,024 Quad Output 1 409 1,069 2.62 2,093 5.12 1,291 3.16

4,096 Quad Output 1 381 5,167 13.57 9,263 24.32 6,157 16.17

256 Quad Output 2 368 162 0.44 397 1.08 299 0.81

1,024 Quad Output 2 386 557 1.44 1,581 4.09 1,163 3.01

4,096 Quad Output 2 379 2,607 6.88 6,703 17.7 5,133 13.55

256 Quad Output 4 346 118 0.34 374 1.08 283 0.82

1,024 Quad Output 4 341 340 1.00 1,364 4.00 1,099 3.22

4,096 Quad Output 4 327 1,378 4.22 5,474 16.76 4,633 14.19

256 Single Output 1 414 1,115 2.69 1,371 3.31 1,628 3.93

1,024 Single Output 1 407 5,230 12.85 6,344 15.58 7,279 17.88

4,096 Single Output 1 416 24,705 59.32 28,801 69.16 32,898 79.00

256 Single Output 2 413 585 1.42 841 2.04 1,098 2.66

1,024 Single Output 2 374 2,652 7.09 3,676 9.83 4,701 12.58

4,096 Single Output 2 391 12,329 31.53 16,495 42.18 20,605 52.69

Notes to Table 1–14:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from one to 
two single-output engines in parallel, or from one, two, or four quad-output engines in parallel. 

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output. 
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.
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Stratix IV Devices
Table 1–15 shows the streaming data flow performance, using the 4 multipliers /2 
adders complex multiplier structure, for data and twiddle width 16, for Stratix IV 
(EP4SGX70DF29C2X) devices.

Table 1–16 shows the variable streaming data flow performance, with in order inputs 
and bit-reversed outputs, for width 16 (32 for floating point), for Stratix IV 
(EP4SGX70DF29C2X) devices.

1 The variable streaming with fixed-point number representation uses natural word 
growth, therefore the multiplier requirement is larger compared with the equivalent 
streaming FFT with the same number of points.

If you want to significantly reduce M9K memory utilization, set a lower fMAX target.

Table 1–17 lists resource usage with buffered burst data flow architecture, using the 4 
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for 
Stratix IV (EP4SGX70DF29C2X) devices.

Table 1–15. Performance with the Streaming Data Flow Engine Architecture—Stratix IV Devices

Points 
Combinational

ALUTs
Logic 

Registers
Memory 

(Bits)
Memory 
(M9K)

18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)

256 2,142 3,688 39,168 20 12 420 256 0.61

1,024 2,435 4,384 155,904 20 12 396 1,024 2.59

4,096 3,732 5,929 622,848 76 24 358 4,096 11.43

Table 1–16. Performance with the Variable Streaming Data Flow Engine Architecture—Stratix IV Devices

Point 
Type Points 

Combinational 
ALUTs

Logic 
Registers

Memory
18 × 18 
Blocks

fMAX 
(MHz)

Clock 
Cycle 
Count

Transform 
Time (s)Bits ALUTs M9K

Fixed 256 2,572 3,996 10,193 29 10 24 304 256 0.84

Fixed 1,024 3,601 5,433 42,377 75 14 32 303 1,024 3.38

Fixed 4096 4,693 6,857 171,611 134 32 40 293 4,096 14.00

Floating 256 17,948 20,457 24,959 225 53 48 227 256 1.13

Floating 1,024 22,342 24,758 84,798 — 87 64 228 1,024 4.49

Floating 4,096 27,322 29,708 316,579 — 136 80 225 4,096 18.18

Table 1–17. Resource Usage with Buffered Burst Data Flow Architecture—Stratix IV Devices (Part 1 of 2)

Points 
Number of 
Engines (1)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX

(MHz)

256 1 1,995 3,546 30,976 16 12 412

1,024 1 2,039 3,738 123,136 16 12 430

4,096 1 2,082 3,917 491,776 60 12 388

256 2 3,344 5,508 30,976 31 24 383

1,024 2 3,380 5,710 123,136 31 24 369

4,096 2 3,426 5,897 491,776 60 24 372
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Table 1–18 lists performance with buffered burst data flow architecture, using the 4 
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for 
Stratix IV (EP4SGX70DF29C2X) devices.

Table 1–19 lists resource usage with burst data flow architecture, using the 4 
multipliers /2 adders complex multiplier structure, for data and twiddle width 16, for 
Stratix IV (EP4SGX70DF29C2X) devices.

256 4 5,868 9,852 30,976 60 48 361

1,024 4 5,931 10,071 123,136 60 48 367

4,096 4 6,007 10,271 491,776 60 48 363

Notes to Table 1–17:

(1) When using the buffered burst architecture, you can specify the number of quad-output FFT engines in the FFT MegaWizard interface.

Table 1–17. Resource Usage with Buffered Burst Data Flow Architecture—Stratix IV Devices (Part 2 of 2)

Points 
Number of 
Engines (1)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

fMAX

(MHz)

Table 1–18. Performance with the Buffered Burst Data Flow Architecture—Stratix IV Devices

Points 
Number of 
Engines (1) fMAX (MHz)

Transform Calculation 
Time (2)

Data Load & Transform 
Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 1 412 235 0.57 491 1.19 331 0.80

1,024 1 430 1,069 2.49 2,093 4.87 1,291 3.00

4,096 1 388 5,167 13.32 9,263 23.88 6,157 15.87

256 2 383 162 0.42 397 1.04 299 0.78

1,024 2 369 557 1.51 1,581 4.28 1,163 3.15

4,096 2 372 2,607 7.00 6,703 18.00 5,133 13.78

256 4 361 118 0.33 347 0.96 283 0.78

1,024 4 367 340 0.93 1,364 3.72 1,099 3.00

4,096 4 363 1,378 3.8 5,474 15.09 4,633 12.78

Notes to Table 1–18:

(1) When using the buffered burst architecture, you can specify the number of quad-output engines in the FFT MegaWizard interface. You may 
choose from one, two, or four quad-output engines in parallel. 

(2) In a buffered burst data flow architecture, transform time is defined as the time from when the N-sample input block is loaded until the first 
output sample is ready for output. Transform time does not include the additional N-1 clock cycle to unload the full output data block.

(3) Block throughput is the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–19. Resource Usage with the Burst Data Flow Architecture—Stratix IV Devices (Part 1 of 2)

Points 
Engine 

Architecture
Number of 
Engines (2)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

256 Quad Output 1 1,849 3,480 14,592 8 12

1,024 Quad Output 1 1,891 3,663 57,600 8 12

4,096 Quad Output 1 1,926 3,830 229,632 28 12

256 Quad Output 2 3,065 5,440 14,592 15 24

1,024 Quad Output 2 3,106 5,632 57,600 15 24

4,096 Quad Output 2 3,154 5,808 229,632 28 24
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Table 1–20 lists performance with burst data flow architecture, using the 4 multipliers 
/2 adders complex multiplier structure, for data and twiddle width 16, for Stratix IV 
(EP4SGX70DF29C2X) devices.

256 Quad Output 4 5,353 9,788 14,592 28 48

1,024 Quad Output 4 5,408 9,998 57,600 28 48

4,096 Quad Output 4 5,482 10,187 229,632 28 48

256 Single Output 1 712 1,431 9,472 3 4

1,024 Single Output 1 749 1,477 37,120 6 4

4,096 Single Output 1 817 1,523 147,712 19 4

256 Single Output 1 1,024 2,278 14,592 9 8

1,024 Single Output 2 1,038 2,354 57,600 11 8

4,096 Single Output 1 1,075 2,430 229,632 28 8

Notes to Table 1–19:

(1) Represents data and twiddle factor precision.
(2) When using the burst data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from 

one to two single-output engines in parallel, or from one, two, or four quad-output engines in parallel.

Table 1–19. Resource Usage with the Burst Data Flow Architecture—Stratix IV Devices (Part 2 of 2)

Points 
Engine 

Architecture
Number of 
Engines (2)

Combinational 
ALUTs

Logic 
Registers

Memory 
(Bits)

Memory 
(M9K)

18 × 18 
Blocks

Table 1–20. Performance with the Burst Data Flow Architecture—Stratix IV Devices (Part 1 of 2)

Points 
Engine 

Architecture
Number of 
Engines (1)

fMAX 
(MHz)

Transform 
Calculation Time (2)

Data Load & 
Transform Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

256 Quad Output 1 418 235 0.56 491 1.17 331 0.79

1,024 Quad Output 1 433 1,069 2.47 2,093 4.84 1,291 2.98

4,096 Quad Output 1 391 5,167 13.22 9,263 23.69 6,157 15.75

256 Quad Output 2 398 162 0.41 397 1.00 299 0.75

1,024 Quad Output 2 404 557 1.38 1,581 3.91 1,163 2.88

4,096 Quad Output 2 379 2,607 6.88 6,703 17.70 5,133 13.56

256 Quad Output 4 363 118 0.33 374 1.03 283 0.78

1,024 Quad Output 4 367 340 0.93 1,364 3.72 1,099 3.00

4,096 Quad Output 4 346 1,378 3.99 5,474 15.84 4,633 13.41

256 Single Output 1 421 1,115 2.65 1,371 3.26 1,628 3.87

1,024 Single Output 1 414 5,230 12.63 6,344 15.32 7,279 17.58

4,096 Single Output 1 396 24,705 62.35 28,801 72.69 32,898 83.03

256 Single Output 2 402 585 1.46 841 2.09 1,098 2.73

1,024 Single Output 2 423 2,652 6.27 3,676 8.69 4,701 11.11
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Installation and Licensing
The FFT MegaCore function is part of the MegaCore® IP Library, which is distributed 
with the Quartus® II software and can be downloaded from the Altera® website, 
www.altera.com.

f For system requirements and installation instructions, refer to the Altera Software 
Installation and Licensing manual.

Figure 1–1 shows the directory structure after you install the FFT MegaCore function, 
where <path> is the installation directory for the Quartus II software. 

The default installation directory on Windows is c:\altera\<version> and on Linux is 
/opt/altera<version>.

OpenCore Plus Evaluation
With Altera’s free OpenCore Plus evaluation feature, you can perform the following 
actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function or AMPPSM 
megafunction) within your system.

4,096 Single Output 2 405 12,329 30.47 16,495 40.77 20,605 50.93

Notes to Table 1–20:

(1) In the burst I/O data flow architecture, you can specify the number of engines in the FFT MegaWizard interface. You may choose from one to 
two single-output engines in parallel, or from one, two, or four quad-output engines in parallel. 

(2) Transform time is the time frame when the input block is loaded until the first output sample (corresponding to the input block) is output. 
Transform time does not include the time to unload the full output data block.

(3) Block throughput is defined as the minimum number of cycles between two successive start-of-packet (sink_sop) pulses.

Table 1–20. Performance with the Burst Data Flow Architecture—Stratix IV Devices (Part 2 of 2)

Points 
Engine 

Architecture
Number of 
Engines (1)

fMAX 
(MHz)

Transform 
Calculation Time (2)

Data Load & 
Transform Calculation

Block Throughput 
(3)

Cycles Time (s) Cycles Time (s) Cycles Time (s)

Figure 1–1. Directory Structure

doc
Contains the documentation for the MegaCore function.
lib
Contains encrypted lower-level files.

ip
Contains the Altera MegaCore IP Library and third-party IP cores. 

<path>
Installation directory.

altera
Contains the Altera MegaCore IP Library.

common
Contains shared components.
fft
Contains the FFT MegaCore function files and documentation.  
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■ Verify the functionality of your design, as well as evaluate its size and speed 
quickly and easily.

■ Generate time-limited device programming files for designs that include 
megafunctions.

■ Program a device and verify your design in hardware.

You only need to purchase a license for the FFT MegaCore function when you are 
completely satisfied with its functionality and performance, and want to take your 
design to production. After you purchase a license, you can request a license file from 
the Altera website at www.altera.com/licensing and install it on your computer. 
When you request a license file, Altera emails you a license.dat file. If you do not have 
Internet access, contact your local Altera representative.

f For more information about OpenCore Plus hardware evaluation, refer to AN 320: 
OpenCore Plus Evaluation of Megafunctions.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If 
tethered mode is supported by all megafunctions in a design, the device can 
operate for a longer time or indefinitely.

All megafunctions in a device time-out simultaneously when the most restrictive 
evaluation time is reached. If there is more than one megafunction in a design, a 
specific megafunction’s time-out behavior might be masked by the time-out behavior 
of the other megafunctions.

The untethered time-out for the FFT MegaCore function is one hour; the tethered 
time-out value is indefinite.

The signals source_real, source_imag, and source_exp are forced low when 
the evaluation time expires.
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2. Getting Started
Design Flows
The FFT MegaCore function supports the following design flows:

■ DSP Builder: Use this flow if you want to create a DSP Builder model that 
includes a FFT MegaCore function variation.

■ MegaWizard™ Plug-In Manager: Use this flow if you would like to create a FFT 
MegaCore function variation that you can instantiate manually in your design.

This chapter describes how you can use a FFT MegaCore function in either of these 
flows. The parameterization provides the same options in each flow and is described 
in “Parameterize the MegaCore Function” on page 2–3.

After parameterizing and simulating a design in either of these flows, you can 
compile the completed design in the Quartus II software.

DSP Builder Flow
Altera’s DSP Builder product shortens digital signal processing (DSP) design cycles 
by helping you create the hardware representation of a DSP design in an 
algorithm-friendly development environment. 

DSP Builder integrates the algorithm development, simulation, and verification 
capabilities of The MathWorks MATLAB® and Simulink® system-level design tools 
with Altera Quartus® II software and third-party synthesis and simulation tools. You 
can combine existing Simulink blocks with Altera DSP Builder blocks and MegaCore 
function variation blocks to verify system level specifications and perform simulation.

In DSP Builder, a Simulink symbol for the MegaCore function appears in the 
MegaCore Functions library of the Altera DSP Builder Blockset in the Simulink library 
browser.

You can use the FFT MegaCore function in the MATLAB/Simulink environment by 
performing the following steps:

1. Create a new Simulink model.

2. Select the fft_<version> block from the MegaCore Functions library in the 
Simulink Library Browser, add it to your model, and give the block a unique 
name.

3. Double-click on the fft_<version> block in your model to display the 
MegaWizard interface and parameterize the MegaCore function variation. For an 
example of setting parameters for the FFT MegaCore function, refer to 
“Parameterize the MegaCore Function” on page 2–3.

4. Click Finish in the MegaWizard interface to complete the parameterization and 
generate your FFT MegaCore function variation. For information about the 
generated files, refer to Table 2–1 on page 2–9.

5. Connect your FFT MegaCore function variation to the other blocks in your model.
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6. Simulate the MegaCore function variation in your DSP Builder model.

f For more information about the DSP Builder flow, refer to the Using MegaCore 
Functions chapter in the DSP Builder User Guide.

1 When you are using the DSP Builder flow, device selection, simulation, Quartus II 
compilation and device programming are all controlled within the DSP Builder 
environment.

DSP Builder supports integration with SOPC Builder using Avalon® Memory-Mapped 
(Avalon-MM) master/slave and Avalon Streaming (Avalon-ST) source/sink 
interfaces.

f For more information about these interface types, refer to the Avalon Interface 
Specifications.

MegaWizard Plug-In Manager Flow
The MegaWizard™ Plug-in Manager flow allows you to customize a Viterbi Compiler 
MegaCore function, and manually integrate the MegaCore function variation into a 
Quartus II design.

Follow the steps below to use the MegaWizard Plug-in Manager flow.

1. Create a new project using the New Project Wizard available from the File menu 
in the Quartus II software.

2. Launch MegaWizard Plug-in Manager from the Tools menu, and select the option 
to create a new custom megafunction variation (Figure 2–1).

Figure 2–1. MegaWizard Plug-In Manager
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3. Click Next and select FFT <version> from the DSP>Transforms section in the 
Installed Plug-Ins tab.

4. Verify that the device family is the same as you specified in the New Project 
Wizard.

5. Select the top-level output file type for your design; the wizard supports VHDL 
and Verilog HDL.

6. The MegaWizard Plug-In Manager shows the project path that you specified in the 
New Project Wizard. Append a variation name for the MegaCore function output 
files <project path>\<variation name>. Figure 2–2 shows the wizard after you have 
made these settings.

7. Click Next to launch IP Toolbench.

Parameterize the MegaCore Function
To parameterize your MegaCore function, follow these steps:

1. Click Step 1: Parameterize in IP Toolbench (Figure 2–3 on page 2–4).

Figure 2–2. Select the MegaCore Function
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2. Do not change the Target Device Family The device family is automatically set to 
the value that was specified in your Quartus II project and the generated HDL for 
your MegaCore function variation may be incorrect if this value is changed 
(Figure 2–4). 

Figure 2–3. IP Toolbench—Parameterize

Figure 2–4. Parameters Tab
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3. Choose the Transform length, Data precision, and Twiddle precision.

1 The twiddle factor precision must be less than or equal to the data 
precision.

4. Click the Architecture tab (Figure 2–5).

5. Choose the FFT engine architecture, number of parallel FFT engines, and the I/O 
data flow. 

If you select the Streaming I/O data flow, the FFT MegaCore function 
automatically generates a design with a Quad Output FFT engine architecture and 
the minimum number of parallel FFT engines for the required throughput.

1 A single FFT engine architecture provides enough performance for up to a 
1,024-point streaming I/O data flow FFT.

Figure 2–5. Architecture Tab
© November 2009 Altera Corporation FFT MegaCore Function User Guide



2–6 Chapter 2: Getting Started
MegaWizard Plug-In Manager Flow
If you select Variable Streaming I/O data flow, the Transform length (specified 
on the Architecture Tab) represents the maximum transform length that can be 
performed. All transforms of length 2m where 6  m  log2(transform length) can be 
performed at runtime.

1 If you select Variable Streaming and Floating Point on the Architecture 
tab, the precision (on the Parameters tab) is automatically set to 32.

If you select Variable Streaming I/O data flow, options to set the I/O order and 
data representation are visible. The Input Order option allow you to select the 
order in which the samples are presented to the FFT. If you select Natural Order, 
the FFT expects the order of the input samples to be sequential (1, 2 …, n – 1, n) 
where n is the size of the current transform. For Bit Reverse Order, the FFT expects 
the input samples to be in bit-reversed order. For –N/2 to N/2, the FFT expects the 
input samples to be in the order –N/2 to (N/2) – 1 (also known as DC-centered 
order). Similarly the Output Order option specifies the order in which the FFT 
generates the output. You can also select Fixed Point or Floating Point data 
representation.

6. Click the Implementation Options tab (Figure 2–6).

Figure 2–6. Implementation Options Tab
FFT MegaCore Function User Guide © November 2009 Altera Corporation



Chapter 2: Getting Started 2–7
MegaWizard Plug-In Manager Flow
7. Choose the complex multiplier implementation.

You can choose a Structure with three multipliers and five adders or four 
multipliers and two adders. You can also choose to Implement Multipliers in DSP 
blocks only, logic cells only or both DSP blocks and logic cells.

8. Turn on Global Clock Enable, if you want to add a global clock enable to your 
design.

9. Specify the memory options.

You can set the Twiddle ROM Distribution between 100% M9K and 100% MLAB, 
select to Use M-RAM Blocks and choose to Implement appropriate logic 
functions in RAM.

1 The complex multiplier implementation and memory options are not 
available for the variable streaming architecture.

10. Click Finish when the implementation options are set.

f For more information about the FFT MegaCore function parameters, refer to Table 3–3 
on page 3–13.

Set Up Simulation
An IP functional simulation model is a cycle-accurate VHDL or Verilog HDL model 
produced by the Quartus II software. The model allows for fast functional simulation 
of IP using industry-standard VHDL and Verilog HDL simulators.

c You may only use these simulation model output files for simulation purposes and 
expressly not for synthesis or any other purposes. Using these models for synthesis 
creates a nonfunctional design.

To generate an IP functional simulation model for your MegaCore function, follow 
these steps:

1. Click Step 2: Set Up Simulation in IP Toolbench (Figure 2–3 on page 2–4).

2. Turn on Generate Simulation Model (Figure 2–7 on page 2–8).

3. Choose the required language in the Language list.

4. Some third-party synthesis tools can use a netlist that contains only the structure 
of the MegaCore function, but not detailed logic, to optimize performance of the 
design that contains the MegaCore function. If your synthesis tool supports this 
feature, turn on Generate netlist.

5. Click OK.
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Generate the MegaCore Function
To generate your MegaCore function, follow these steps:

1. Click Step 3: Generate in IP Toolbench (Figure 2–3 on page 2–4).

The generation phase may take several minutes to complete. The generation 
progress and status is displayed in a report window.

Figure 2–8 shows the generation report.

Figure 2–7. Generate Simulation Model

Figure 2–8. Generation Report 
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Table 2–1 describes the generated files and other files that may be in your project 
directory. The names and types of files specified in the IP Toolbench report vary 
based on whether you created your design with VHDL or Verilog HDL

Table 2–1. Generated Files (Part 1 of 2)  (Note 1) & (2)

Filename Description

imag_input.txt The text file contains input imaginary component random data. This file is read by 
the generated VHDL or Verilog HDL MATLAB testbenches. 

real_input.txt Test file containing real component random data. This file is read by the generated 
VHDL or Verilog HDL and MATLAB testbenches. 

<variation name>.bsf Quartus II symbol file for the MegaCore function variation. You can use this file in 
the Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore function variation. Add the 
contents of this file to any VHDL architecture that instantiates the MegaCore 
function.

<variation name>.html A MegaCore function report file in hypertext markup language format.

<variation name>.qip A single Quartus II IP file is generated that contains all of the assignments and 
other information required to process your MegaCore function variation in the 
Quartus II compiler. You are prompted to add this file to the current Quartus II 
project when you exit from the MegaWizard. 

<variation name>.vo or .vho VHDL or Verilog HDL IP functional simulation model.

<variation name>.vhd, or .v A MegaCore function variation file, which defines a VHDL or Verilog HDL top-level 
description of the custom MegaCore function. Instantiate the entity defined by 
this file inside of your design. Include this file when compiling your design in the 
Quartus II software.

<variation name>_bit_reverse_top.vhd Example top-level VHDL design with bit-reversal module (variable streaming FFT 
engine-only mode only). This file shows how the bit-reversal operation can be 
external to the MegaCore architecture. For example, when there is an opportunity 
to combine the bit-reversal operation with another user-specified operation.

<variation name>_1n1024cos.hex,
<variation name>_2n1024cos.hex,
<variation name>_3n1024cos.hex

Intel hex-format ROM initialization files (not generated for variable streaming 
FFT).

<variation name>_1n1024sin.hex,
<variation name>_2n1024sin.hex,
<variation name>_3n1024sin.hex

Intel hex-format ROM initialization files (not generated for variable streaming 
FFT).

<variation name>_fft.fsi A DSP Builder fast functional simulation model parameter description file 
(variable streaming only).

<variation name>_model.m MATLAB m-file describing a MATLAB bit-accurate model.

<variation name>_tb.m MATLAB testbench.

<variation name>_syn.v or 
<variation name>_syn.vhd

A timing and resource netlist for use in some third-party synthesis tools.

<variation name>_tb.v or 

<variation name>_tb.vhd

Verilog HDL or VHDL testbench file.

<variation name>_nativelink.tcl Tcl Script that sets up NativeLink in the Quartus II software to natively simulate 
the design using selected EDA tools. Refer to “Simulating in Third-Party 
Simulation Tools Using NativeLink” on page 2–12.
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2. After you review the generation report, click Exit to close IP Toolbench. Then click 
Yes on the Quartus II IP Files prompt to add the .qip file describing your custom 
MegaCore function to the current Quartus II project.

f Refer to the Quartus II Help for more information about the MegaWizard Plug-In 
Manager.

You can now integrate your custom MegaCore function variation into your design 
and simulate and compile.

Simulate the Design 
This section describes the following simulation techniques:

■ Simulate in the MATLAB Software

■ Simulate with IP Functional Simulation Models

■ Simulating in Third-Party Simulation Tools Using NativeLink

Simulate in the MATLAB Software
This section discusses fixed-transform and variable streaming architecture 
simulations.

Fixed Transform Architectures
The FFT MegaCore function outputs a bit-accurate MATLAB model <variation 
name>_model.m, which you can use to model the behavior of your custom FFT 
variation in the MATLAB software. The model takes a complex vector as input and it 
outputs the transform-domain complex vector and corresponding block exponent 
values. The length and direction of the transform (FFT/IFFT) are also passed as inputs 
to the model.

If the input vector length is an integral multiple of N, the transform length, the length 
of the output vector(s) is equal to the length of the input vector. However, if the input 
vector is not an integral multiple of N, it is zero-padded to extend the length to be so.

f For additional information about exponent values, refer to AN 404: FFT/IFFT Block 
Floating Point Scaling.

twr1_opt.hex, twi1_opt.hex, 
twr2_opt.hex, twi2_opt.hex, 
twr3_opt.hex, twi3_opt.hex, 
twr4_opt.hex, twi4_opt.hex,

Intel hex-format ROM initialization files (variable streaming FFT only).

Notes to Table 2–1:

(1) These files are variation dependent, some may be absent or their names may change.
(2) <variation name> is a prefix variation name supplied automatically by IP Toolbench.

Table 2–1. Generated Files (Part 2 of 2)  (Note 1) & (2)

Filename Description
FFT MegaCore Function User Guide © November 2009 Altera Corporation
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The wizard also creates the MATLAB testbench file <variation name>_tb.m. This file 
creates the stimuli for the MATLAB model by reading the input complex random data 
from IP Toolbench-generated.

If you selected Floating point data representation, the input data is generated in 
hexadecimal format.

To model your fixed-transform architecture FFT MegaCore function variation in the 
MATLAB software, follow these steps:

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your 
project.

3. Perform the simulation:

a. Type help <variation name>_model at the command prompt to view the 
input and output vectors that are required to run the MATLAB model as a 
standalone M-function. Create your input vector and make a function call to 
<variation name>_model. For example:

N=2048;
INVERSE = 0; % 0 => FFT 1=> IFFT
x = (2^12)*rand(1,N) + j*(2^12)*rand(1,N);
[y,e] = <variation name>_model(x,N,INVERSE);

or

b. Run the provided testbench by typing the name of the testbench, <variation 
name>_tb at the command prompt.

f For more information about MATLAB and Simulink, refer to the MathWorks web site 
at www.mathworks.com.

Variable Streaming Architecture
The FFT MegaCore function outputs a bit-accurate MATLAB model <variation 
name>_model.m, which you can use to model the behavior of your custom FFT 
variation in the MATLAB software. The model takes a complex vector as input and it 
outputs the transform-domain complex vector. The lengths and direction of the 
transforms (FFT/IFFT) (specified as one entry per block) are also passed as an input to 
the model. 

You must ensure that the length of the input vector is at least as large as the sum of the 
transform sizes for the model to function correctly.

The wizard also creates the MATLAB testbench file <variation name>_tb.m. This file 
creates the stimuli for the MATLAB model by reading the input complex random data 
from files generated by IP Toolbench. 

To model your variable streaming architecture FFT MegaCore function variation in 
the MATLAB software, follow these steps:

1. Run the MATLAB software.

2. In the MATLAB command window, change to the working directory for your 
project.
© November 2009 Altera Corporation FFT MegaCore Function User Guide
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3. Perform the simulation:

a. Type help <variation name>_model at the command prompt to view the 
input and output vectors that are required to run the MATLAB model as a 
standalone M-function. Create your input vector and make a function call to 
<variation name>_model. For example:

nps=[256,2048];
inverse = [0,1]; % 0 => FFT 1=> IFFT
x = (2^12)*rand(1,sum(nps)) + j*(2^12)*rand(1,sum(nps));
[y] = <variation name>_model(x,nps,inverse);

or

b. Run the provided testbench by typing the name of the testbench, <variation 
name>_tb at the command prompt.

1 If you selected bit-reversed output order, you can reorder the data with the 
following MATLAB code:

y = y(bit_reverse(0:(FFTSIZE-1), log2(FFTSIZE)) + 1);

where bit_reverse is:

function y = bit_reverse(x, n_bits)
y = bin2dec(fliplr(dec2bin(x, n_bits)));

Simulate with IP Functional Simulation Models
To simulate your design, use the IP functional simulation models generated by IP 
Toolbench. The IP functional simulation model is the .vo or .vho file generated as 
specified in “Set Up Simulation” on page 2–7. Compile the .vo or .vho file in your 
simulation environment to perform functional simulation of your custom variation of 
the MegaCore function.

f For more information about IP functional simulation models, refer to the Simulating 
Altera IP in Third-Party Simulation Tools chapter in volume 3 of the Quartus II 
Handbook.

Simulating in Third-Party Simulation Tools Using NativeLink
You can perform a simulation in a third-party simulation tool from within the 
Quartus II software, using NativeLink.

f For more information about NativeLink, refer to the Simulating Altera IP in Third-Party 
Simulation Tools chapter in volume 3 of the Quartus II Handbook.

You can use the Tcl script file <variation name>_nativelink.tcl to assign default 
NativeLink testbench settings to the Quartus II project. 

To set up simulation in the Quartus II software using NativeLink, follow these steps:

1. Create a custom variation but ensure you specify your variation name to match the 
Quartus II project name.
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2. Check that the absolute path to your third-party simulator executable is set. On the 
Tools menu click Options and select EDA Tools Options.

3. On the Processing menu, point to Start and click Start Analysis & Elaboration.

4. On the Tools menu, click Tcl scripts. Select the <variation name>_nativelink.tcl Tcl 
script and click Run. Check for a message confirming that the Tcl script was 
successfully loaded.

5. On the Assignments menu, click Settings, expand EDA Tool Settings and select 
Simulation. Select a simulator under Tool Name and in NativeLink Settings, 
select Test Benches. 

6. On the Tools menu, point to EDA Simulation Tool and click Run EDA RTL 
Simulation.

Compile the Design
Use the Quartus II software to synthesize and place and route your design. Refer to 
Quartus II Help for instructions on performing compilation. 

Fixed Transform Architecture
To compile your fixed-transform architecture design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to step 2. If 
you are using a third-party synthesis tool to synthesize your design, follow these 
steps:

a. Set a black box attribute for your FFT MegaCore function custom variation 
before you synthesize the design. Refer to Quartus II Help for instructions on 
setting black-box attributes per synthesis tool.

b. Run the synthesis tool to produce an EDIF Netlist File (.edf) or Verilog Quartus 
Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

1 The .qip file supersedes the files you had to add to the project explicitly in previous 
versions of the Quartus II software. The .qip file contains the information about the 
MegaCore function that the Quartus II software requires.

2. On the Processing menu, click Start Compilation.
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Variable Streaming Architecture
To compile your variable streaming architecture design, follow these steps:

1. If you are using the Quartus II software to synthesize your design, skip to step 2. If 
you are using a third-party synthesis tool to synthesize your design, follow these 
steps:

a. Set a black-box attribute for your FFT MegaCore function custom variation 
before you synthesize the design. Refer to Quartus II Help for instructions on 
setting black-box attributes per synthesis tool.

b. Run the synthesis tool to produce an EDIF Netlist File (.edf) or Verilog Quartus 
Mapping (VQM) file (.vqm) for input to the Quartus II software.

c. Add the EDIF or VQM file to your Quartus II project.

2. On the Project menu, click Add/Remove Files in Project.

3. You should see a list of files in the project. If no files are listed, browse to the \lib 
directory, then select and add all files with the prefix auk_dspip_r22sdf and 
auk_dspip_bit_reverse. Browse to the <project> directory and select all files with 
prefix auk_dspip.

4. On the Processing menu, click Start Compilation.

Program a Device
After you have compiled your design, program your targeted Altera device, and 
verify your design in hardware. 

With Altera's free OpenCore Plus evaluation feature, you can evaluate the FFT 
MegaCore function before you purchase a license. OpenCore Plus evaluation allows 
you to generate an IP functional simulation model, and produce a time-limited 
programming file. 

f For more information about IP functional simulation models, refer to the Simulating 
Altera IP in Third-Party Simulation Tools chapter in volume 3 of the Quartus II Handbook.

You can simulate the FFT in your design, and perform a time-limited evaluation of 
your design in hardware.

f For more information about OpenCore Plus hardware evaluation using the FFT, refer 
to “OpenCore Plus Evaluation” on page 1–14 and AN 320: OpenCore Plus Evaluation of 
Megafunctions.
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3. Functional Description
The discrete Fourier transform (DFT), of length N, calculates the sampled Fourier 
transform of a discrete-time sequence at N evenly distributed points k = 2k/N on 
the unit circle. 

The following equation shows the length-N forward DFT of a sequence x(n):

where k = 0, 1, ... N – 1 

The following equation shows the length-N inverse DFT:

where n = 0, 1, ... N – 1

The complexity of the DFT direct computation can be significantly reduced by using 
fast algorithms that use a nested decomposition of the summation in equations one 
and two—in addition to exploiting various symmetries inherent in the complex 
multiplications. One such algorithm is the Cooley-Tukey radix-r decimation-in-
frequency (DIF) FFT, which recursively divides the input sequence into N/r sequences 
of length r and requires logrN stages of computation. 

Each stage of the decomposition typically shares the same hardware, with the data 
being read from memory, passed through the FFT processor and written back to 
memory. Each pass through the FFT processor is required to be performed logrN 
times. Popular choices of the radix are r = 2, 4, and 16. Increasing the radix of the 
decomposition leads to a reduction in the number of passes required through the FFT 
processor at the expense of device resources. 

1 The MegaCore function does not apply the scaling factor 1/N required for a length-N 
inverse DFT. You must apply this factor externally. 

Buffered, Burst, & Streaming Architectures
A radix-4 decomposition, which divides the input sequence recursively to form four-
point sequences, has the advantage that it requires only trivial multiplications in the 
four-point DFT and is the chosen radix in the Altera® FFT MegaCore® function. This 
results in the highest throughput decomposition, while requiring non-trivial complex 
multiplications in the post-butterfly twiddle-factor rotations only. In cases where N is 
an odd power of two, the FFT MegaCore automatically implements a radix-2 pass on 
the last pass to complete the transform.
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Variable Streaming Architecture
To maintain a high signal-to-noise ratio throughout the transform computation, the 
FFT MegaCore function uses a block-floating-point architecture, which is a trade-off 
point between fixed-point and full-floating point architectures. 

In a fixed-point architecture, the data precision needs to be large enough to 
adequately represent all intermediate values throughout the transform computation. 
For large FFT transform sizes, an FFT fixed-point implementation that allows for 
word growth can make either the data width excessive or can lead to a loss of 
precision. 

In a floating-point architecture each number is represented as a mantissa with an 
individual exponent—while this leads to greatly improved precision, floating-point 
operations tend to demand increased device resources.

In a block-floating point architecture, all of the values have an independent mantissa 
but share a common exponent in each data block. Data is input to the FFT function as 
fixed point complex numbers (even though the exponent is effectively 0, you do not 
enter an exponent). 

The block-floating point architecture ensures full use of the data width within the FFT 
function and throughout the transform. After every pass through a radix-4 FFT, the 
data width may grow up to log2 (42) = 2.5 bits. The data is scaled according to a 
measure of the block dynamic range on the output of the previous pass. The number 
of shifts is accumulated and then output as an exponent for the entire block. This 
shifting ensures that the minimum of least significant bits (LSBs) are discarded prior 
to the rounding of the post-multiplication output. In effect, the block-floating point 
representation acts as a digital automatic gain control. To yield uniform scaling across 
successive output blocks, you must scale the FFT function output by the final 
exponent. 

1 In comparing the block-floating point output of the Altera FFT MegaCore function to 
the output of a full precision FFT from a tool like MATLAB, the output should be 
scaled by 2 (–exponent_out) to account for the discarded LSBs during the transform. (Refer 
to “Block Floating Point Scaling” on page A–1.)

f For more information about exponent values, refer to AN 404: FFT/IFFT Block 
Floating Point Scaling.

Variable Streaming Architecture
The variable streaming architecture uses a radix 22 single delay feedback architecture, 
which is a fully pipelined architecture. For a length N transform there are log4(N) 
stages concatenated together. The radix 22 algorithm has the same multiplicative 
complexity of a fully pipelined radix-4 architecture, however the butterfly unit retains 
a radix-2 architecture. The butterfly units use the DIF decomposition.

The variable streaming architecture uses either fixed point of single precision floating 
point data representation. Fixed point representation allows for natural word growth 
through the pipeline. The maximum growth of each stage is log2(4 2) = 2.5 bits, 
which is accommodated in the design by growing the pipeline stages by either 2 bits 
or 3 bits. After the complex multiplication the data is rounded down to the expanded 
data size using convergent rounding.
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The floating point internal data representation is single precision floating point (32 bit, 
IEEE 754 representation). Floating point operations are costly in terms of hardware 
resources. To reduce the amount of logic required for floating point operations, the 
variable streaming FFT uses "fused" floating point kernels. The reduction in logic 
occurs by fusing together several floating point operations and reducing the number 
of normalizations that need to occur.

You can select input and output orders generated by the FFT. Table 3–1 shows the 
input and output order options.

Some applications for the FFT require an FFT > user operation > IFFT chain. In this 
case, choosing the input order and output order carefully can lead to significant 
memory and latency savings. For example, consider where the input to the first FFT is 
in natural order and the output is in bit-reversed order (FFT is operating in engine-
only mode). In this example, if the IFFT operation is configured to accept bit-reversed 
inputs and produces natural order outputs (IFFT is operating in engine-only mode), 
only the minimum amount of memory is required, which provides a saving of N 
complex memory words, and a latency saving of N clock cycles, where N is the size of 
the current transform.

The Avalon Streaming Interface 
The Avalon® Streaming (Avalon-ST) interface is an evolution of the Atlantic™ 
interface. The Avalon-ST interface defines a standard, flexible, and modular protocol 
for data transfers from a source interface to a sink interface and simplifies the process 
of controlling the flow of data in a datapath. 

The Avalon-ST interface signals can describe traditional streaming interfaces 
supporting a single stream of data without knowledge of channels or packet 
boundaries. Such interfaces typically contain data, ready, and valid signals. The 
Avalon-ST interface can also support more complex protocols for burst and packet 
transfers with packets interleaved across multiple channels. 

The Avalon-ST interface inherently synchronizes multi-channel designs, which allows 
you to achieve efficient, time-multiplexed implementations without having to 
implement complex control logic.

Table 3–1. Input & Output Order Options

Input Order Output Order Mode Comments

Natural Bit reversed Engine-only Requires minimum memory and minimum latency.

Bit reversed Natural

DC-centered Bit-reversed

Natural Natural Engine with 
bit-reversal

At the output, requires an extra N complex memory 
words and an additional N clock cycles latency, 
where N is the size of the transform.

Bit reversed Bit reversed

DC-centered Natural
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The Avalon-ST interface supports backpressure, which is a flow control mechanism, 
where a sink can signal to a source to stop sending data. The sink typically uses 
backpressure to stop the flow of data when its FIFO buffers are full or when there is 
congestion on its output. When designing a datapath, which includes the FFT 
MegaCore function, you may not need backpressure if you know the downstream 
components can always receive data. You may achieve a higher clock rate by driving 
the source ready signal source_ready of the FFT high, and not connecting the sink 
ready signal sink_ready.

The FFT MegaCore function has a READY_LATENCY value of zero.

f For more information about the Avalon-ST interface, refer to the Avalon Interface 
Specifications.

FFT Processor Engine Architectures
The FFT MegaCore function can be parameterized to use either quad-output or 
single-output engine architecture. To increase the overall throughput of the FFT 
MegaCore function, you may also use multiple parallel engines of a variation. This 
section discusses the following topics:

■ Radix 22 single-delay feedback architecture

■ Quad-output FFT engine architecture

■ Single-output FFT engine architecture

Radix-22 Single Delay Feedback Architecture
Radix-22 single delay feedback architecture is a fully pipelined architecture for 
calculating the FFT of incoming data. It is similar to radix-2 single delay feedback 
architectures. However, the twiddle factors are rearranged such that the 
multiplicative complexity is equivalent to a radix-4 single delay feedback architecture. 

There are log2(N) stages with each stage containing a single butterfly unit and a 
feedback delay unit that delays the incoming data by a specified number of cycles, 
halved at every stage. These delays effectively align the correct samples at the input of 
the butterfly unit for the butterfly calculations. Every second stage contains a 
modified radix-2 butterfly whereby a trivial multiplication by –j is performed before 
the radix-2 butterfly operations. The output of the pipeline is in bit-reversed order. 

The following scheduled operations in the pipeline for an FFT of length N = 16 occur. 

1. For the first 8 clock cycles, the samples are fed unmodified through the butterfly 
unit to the delay feedback unit.

2. The next 8 clock cycles perform the butterfly calculation using the data from the 
delay feedback unit and the incoming data. The higher order calculations are sent 
through to the delay feedback unit while the lower order calculations are sent to 
the next stage.

3. The next 8 clock cycles feeds the higher order calculations stored in the delay 
feedback unit unmodified through the butterfly unit to the next stage.

Subsequent data stages use the same principles. However, the delays in the feedback 
path are adjusted accordingly.
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Quad-Output FFT Engine Architecture
For applications where transform time is to be minimized, a quad-output FFT engine 
architecture is optimal. The term quad-output refers to the throughput of the internal 
FFT butterfly processor. The engine implementation computes all four radix-4 
butterfly complex outputs in a single clock cycle. 

Figure 3–1 shows a diagram of the quad-output FFT engine.

Complex data samples x[k,m] are read from internal memory in parallel and re-
ordered by switch (SW). Next, the ordered samples are processed by the radix-4 
butterfly processor to form the complex outputs G[k,m]. Because of the inherent 
mathematics of the radix-4 DIF decomposition, only three complex multipliers are 
required to perform the three non-trivial twiddle-factor multiplications on the outputs 
of the butterfly processor. To discern the maximum dynamic range of the samples, the 
four outputs are evaluated in parallel by the block-floating point units (BFPU). The 
appropriate LSBs are discarded and the complex values are rounded and re-ordered 
before being written back to internal memory.

Single-Output FFT Engine Architecture
For applications where the minimum-size FFT function is desired, a single-output 
engine is most suitable. The term single-output again refers to the throughput of the 
internal FFT butterfly processor. In the engine architecture, a single butterfly output is 
computed per clock cycle, requiring a single complex multiplier (Figure 3–2 on 
page 3–6).

Figure 3–1. Quad-Output FFT Engine
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I/O Data Flow Architectures
This section describes and illustrates the following I/O data flow architectural 
options supported by the FFT MegaCore function:

■ Streaming

■ Variable Streaming

■ Buffered Burst

■ Burst

f For information about setting the architectural parameters in IP Toolbench, refer to 
“Parameterize the MegaCore Function” on page 2–3. 

Streaming
The streaming I/O data flow FFT architecture allows continuous processing of input 
data, and outputs a continuous complex data stream without the requirement to halt 
the data flow in or out of the FFT function. 

Streaming FFT Operation
Figure 3–3 on page 3–7 shows an example simulation waveform.

Following the de-assertion of the system reset, the data source asserts sink_valid to 
indicate to the FFT function that valid data is available for input. A successful data 
transfer occurs when both the sink_valid and the sink_ready are asserted. 

When the data transfer is complete, sink_sop is de-asserted and the data samples 
are loaded in natural order. 

For more information about the signals, refer to Table 3–4 on page 3–15.

f For more information about the Avalon-ST interface, refer to the Avalon Interface 
Specifications.

Figure 3–2. Single-Output FFT Engine Architecture
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Figure 3–4 shows the input flow control. When the final sample is loaded, the source 
asserts sink_eop and sink_valid for the last data transfer.

To change direction on a block-by-block basis, assert or deassert inverse 
(appropriately) simultaneously with the application of the sink_sop pulse 
(concurrent with the first input data sample of the block). 

When the FFT has completed the transform of the input block, it asserts source_valid 
and outputs the complex transform domain data block in natural order. The FFT 
function asserts source_sop to indicate the first output sample. Figure 3–5 shows 
the output flow control.

Figure 3–3. FFT Streaming Data Flow Architecture Simulation Waveform

Figure 3–4. FFT Streaming Data Flow Architecture Input Flow Control
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Figure 3–5. FFT Streaming Data Flow Architecture Output Flow Control
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After N data transfers, source_eop is asserted to indicate the end of the output data 
block (Figure 3–3 on page 3–7).

Enabling the Streaming FFT
The sink_valid signal must be asserted for source_valid to be asserted (and a 
valid data output). To extract the final frames of data from the FFT, you need to 
provide several frames where the sink_valid signal is asserted and apply the 
sink_sop and sink_eop signals in accordance with the Avalon-ST specification.

Variable Streaming
The variable streaming architecture allows continuous streaming of input data and 
produces a continuous stream of output data similar to the streaming architecture.

Change the Block Size
You change the size of the FFT on a block-by-block basis by changing the value of the 
fftpts simultaneously with the application of the sink_sop pulse (concurrent with 
the first input data sample of the block). fftpts uses a binary representation of the 
size of the transform, therefore for a block with maximum transfer size of 1,024. 
Table 3–2 shows the value of the fftpts signal and the equivalent transform size.

To change direction on a block-by-block basis, assert or de-assert inverse 
(appropriately) simultaneously with the application of the sink_sop pulse 
(concurrent with the first input data sample of the block). When the FFT has 
completed the transform of the input block, it asserts source_valid and outputs the 
complex transform domain data block. The FFT function asserts the source_sop to 
indicate the first output sample. The order of the output data depends on the output 
order that you select in IP Toolbench. The output of the FFT may be in natural order or 
bit-reversed order. Figure 3–6 shows the output flow control when the output order is 
bit-reversed. If the output order is natural order, data flow control remains the same, 
but the order of samples at the output is in sequential order 1..N. 

Table 3–2.  fftpts and Transform Size

fftpts Transform Size

10000000000 1,024

01000000000 512

00100000000 256

00010000000 128

00001000000 64

Figure 3–6. Output Flow Control—Bit Reversed Order
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Enabling the Variable Streaming FFT
The FFT processes data when there is valid data transferred to the module 
(sink_valid asserted). Figure 3–7 shows the FFT behavior when sink_valid is 
de-asserted. 

When sink_valid is de-asserted during a frame, the FFT stalls and no data is 
processed until sink_valid is reasserted. This implies that any previous frames that 
are still in the FFT also stall. 

If sink_valid is de-asserted between frames, the data currently in the FFT continues 
to be processed and transferred to the output. Figure 3–7 shows the FFT behavior 
when sink_valid is de-asserted between frames and within a frame.

The FFT may optionally be disabled by deasserting the clk_en signal. 

Dynamically Changing the FFT Size
When the size of the incoming FFT changes, the FFT stalls the incoming data 
(deasserts the sink_ready signal) until all of the previous FFT frames of the 
previous FFT size have been processed and transferred to the output. Figure 3–8 
shows dynamically changing the FFT size for engine-only mode.

Figure 3–7. FFT Behavior When sink_valid is Deasserted
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Figure 3–8. Dynamically Changing the FFT Size
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The Effect of I/O Order
The order of samples entering and leaving the FFT is determined by the wizard 
selection in the I/O order panel. This selection also determines if the FFT is operating 
in engine-only mode or engine with bit-reversal mode. 

If the FFT operates in engine-only mode, the output data is available after 
approximately N + latency clocks cycles after the first sample was input to the FFT. 
Latency represents a small latency through the FFT core and is dependant on the 
transform size. 

For engine with bit-reversal mode, the output is available after approximately 2N + 
latency cycles. Figure 3–9 and 3–10 show the data flow output when the FFT is 
operating in engine-only mode and engine with bit-reversal mode respectively.

Buffered Burst
The buffered burst I/O data flow architecture FFT requires fewer memory resources 
than the streaming I/O data flow architecture, but the tradeoff is an average block 
throughput reduction. 

Figure 3–11 on page 3–11 shows an example simulation waveform.

Figure 3–9. Data Flow—Engine-Only Mode

Figure 3–10. Data Flow—Engine with Bit-Reversal Mode
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Following the de-assertion of the system reset, the data source asserts sink_valid to 
indicate to the FFT function that valid data is available for input. A successful data 
transfer occurs when both the sink_valid and the sink_ready are asserted. 

The data source loads the first complex data sample into the FFT function and 
simultaneously asserts sink_sop to indicate the start of the input block. On the next 
clock cycle, sink_sop is de-asserted and the following N – 1 complex input data 
samples should be loaded in natural order. On the last complex data sample, 
sink_eop should be asserted.

When the input block is loaded, the FFT function begins computing the transform on 
the stored input block. The sink_ready signal is held high as you can transfer the 
first few samples of the subsequent frame into the small FIFO at the input. If this FIFO 
is filled, the core deasserts the sink_ready signal. It is not mandatory to transfer 
samples during sink_ready cycles. Figure 3–12 shows the input flow control.

Following the interval of time where the FFT processor reads the input samples from 
an internal input buffer, it re-asserts sink_ready indicating it is ready to read in the 
next input block. The beginning of the subsequent input block should be demarcated 
by the application of a pulse on sink_sop aligned in time with the first input sample 
of the next block. 

As in all data flow architectures, the logical level of inverse for a particular block is 
registered by the FFT function at the time of the assertion of the start-of-packet signal, 
sink_sop. 

Figure 3–11. FFT Buffered Burst Data Flow Architecture Simulation Waveform
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Figure 3–12. FFT Buffered Burst Data Flow Architecture Input Flow Control
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When the FFT has completed the transform of the input block, it asserts the 
source_valid and outputs the complex transform domain data block in natural order 
(Figure 3–13).

Signals source_sop and source_eop indicate the start-of-packet and end-of-packet 
for the output block data respectively (Figure 3–11).

1 The sink_valid signal must be asserted for source_valid to be asserted (and a 
valid data output). You must therefore leave sink_valid signal asserted at the end 
of data transfers to extract the final frames of data from the FFT.

f For information about enabling the buffered burst FFT, refer to “Enabling the 
Streaming FFT” on page 3–8.

Burst
The burst I/O data flow architecture operates similarly to the buffered burst 
architecture, except that the burst architecture requires even lower memory resources 
for a given parameterization at the expense of reduced average throughput. 
Figure 3–14 shows the simulation results for the burst architecture. Again, the signals 
source_valid and sink_ready indicate, to the system data sources and slave 
sinks either side of the FFT, when the FFT can accept a new block of data and when a 
valid output block is available on the FFT output.

Figure 3–13. FFT Buffered Burst Data Flow Architecture Output Flow Control
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In a burst I/O data flow architecture, the core can process a single input block only. 
There is a small FIFO buffer at the sink of the block and sink_ready is not 
deasserted until this FIFO buffer is full. Thus you can provide a small number of 
additional input samples associated with the subsequent input block. It is not 
mandatory to provide data to the FFT during sink_ready cycles. The burst 
architecture can load the rest of the subsequent FFT frame only when the previous 
transform has been fully unloaded. 

f For information about enabling the buffered burst FFT, refer to “Enabling the 
Streaming FFT” on page 3–8.

Parameters
Table 3–3 shows the FFT MegaCore function’s parameters. 

Table 3–3. Parameters (Part 1 of 2)

Parameter Value Description

Target Device Family <device family> Displays the target device family. The device family is normally 
preselected by the project specified in the Quartus II software.

The generated HDL for your MegaCore function variation may 
be incorrect if this value does not match the value specified in 
the Quartus II project.

The device family must be the same as your Quartus II project 
device family.

Transform Length 64, 128, 256, 512, 
1024, 2048, 4096, 
8192, 16384. Variable 
streaming also allows 
16, 32, 32768, and 
65536.

The transform length. For variable streaming, this value is the 
maximum FFT length.

Data Precision 8, 10, 12, 14, 16, 18, 
20, 24, 28, 32

The data precision. The values 28 and 32 are available for 
variable streaming only.

Twiddle Precision 8, 10, 12, 14, 16, 18, 
20, 24, 28, 32

The twiddle precision. Twiddle factor precision must be less 
than or equal to data precision.

FFT Engine Architecture Quad Output, 
Single Output

For both the Buffered Burst and Burst I/O data flow 
architectures, you can choose between one, two, and four 
quad-output FFT engines working in parallel. Alternatively, if 
you have selected a single-output FFT engine architecture, you 
may choose to implement one or two engines in parallel. 
Multiple parallel engines reduce the FFT MegaCore function’s 
transform time at the expense of device resources—which 
allows you to select the desired area and throughput trade-off 
point.

For more information about device resource and transform 
time trade-offs, refer to ““Parameters” on page 3–13. Not 
available for variable streaming.

Number of Parallel FFT Engines 1, 2, 4

I/O Data Flow Streaming
Variable Streaming
Buffered Burst
Burst

Choose the FFT architecture.
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I/O Order Bit Reverse Order, 
Natural Order, 
–N/2 to N/2

The input and output order for data entering and leaving the 
FFT (variable streaming architecture only). 

Data Representation Fixed Point or Floating 
Point

The internal data representation type (variable streaming 
architecture only), either fixed point with natural bit-growth or 
single precision floating point.

Structure 3 Mults/5 Adders
4 Mults/2 Adders

You can implement the complex multiplier structure with four 
real multipliers and two adders/subtracters, or three 
multipliers, five adders, and some additional delay elements. 
The 4 Mults/2 Adders structure uses the DSP block structures 
to minimize logic usage, and maximize the DSP block usage. 
This option may also improve the push button fMAX. The 
5 Mults/3 Adders structure requires fewer DSP blocks, but 
more LEs to implement. It may also produce a design with a 
lower fMAX. Not available for variable streaming.

Implement Multipliers in DSP Blocks/Logic Cells
Logic Cells Only
DSP Blocks Only

Each real multiplication can be implemented in DSP blocks or 
LEs only, or using a combination of both. If you use a 
combination of DSP blocks and LEs, the FFT MegaCore 
function automatically extends the DSP block 18 × 18 
multiplier resources with LEs as needed. Not valid for variable 
streaming.

Global clock enable On or Off Turn on if you want to add a global clock enable to your design.

Twiddle ROM Distribution 100% M4K to 100% 
M512 or 100% M9K to 
100% MLAB

High-throughput FFT parameterizations can require multiple 
shallow ROMs for twiddle factor storage. If your target device 
family supports M512 RAM blocks (or MLAB blocks in Stratix 
III devices), you can choose to distribute the ROM storage 
requirement between M4K (M9K) RAM and M512 (MLAB) 
RAM blocks by adjusting the slider bar. Set the slider bar to the 
far left to implement the ROM storage completely in M4K 
(M9K) RAM blocks; set the slider bar to the far right to 
implement the ROM completely in M512 (MLAB) RAM blocks. 

Implementing twiddle ROM in M512 (MLAB) RAM blocks can 
lead to a more efficient device internal memory bit usage. 
Alternatively, this option can be used to conserve M4K (M9K) 
RAM blocks used for the storage of FFT data or other storage 
requirements in your system.

Not available for variable streaming.

Use M-RAM or M144K blocks On or Off Implements suitable data RAM blocks within the FFT MegaCore 
function in M-RAM (M144K in Stratix III devices) to reduce 
M4K (M9K) RAM block usage, in device families that support 
M-RAM blocks.

Not available for variable streaming.

Implement appropriate logic 
functions in RAM

On or Off Uses embedded RAM blocks to implement internal logic 
functions, for example, tapped delay lines in the FFT MegaCore 
function. This option reduces the overall logic element count.

Not available for variable streaming.

Table 3–3. Parameters (Part 2 of 2)

Parameter Value Description
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Signals
Table 3–4 shows the Avalon-ST interface signals.

f For more information about the Avalon-ST interface, refer to the Avalon Streaming 
Interface Specification.

Table 3–4. Avalon-ST Signals (Part 1 of 2)

Signal Name Direction Avalon-ST Type Size Description

clk Input clk 1 Clock signal that clocks all internal FFT engine 
components.

reset_n Input reset_n 1 Active-low asynchronous reset signal.

sink_eop Input endofpacket 1 Indicates the end of the incoming FFT frame.

sink_error Input error 2 Indicates an error has occurred in an upstream 
module, because of an illegal usage of the 
Avalon-ST protocol. The following errors are 
defined (refer to Table 3–6):

■ 00 = no error

■ 01 = missing start of packet (SOP)

■ 10 = missing end of packet (EOP)

■ 11 = unexpected EOP

If this signal is not used in upstream modules, set 
to zero.

sink_imag Input data data precision 
width

Imaginary input data, which represents a signed 
number of data precision bits.

sink_ready Output ready 1 Asserted by the FFT engine when it can accept 
data. It is not mandatory to provide data to the FFT 
during ready cycles.

sink_real Input data data precision 
width

Real input data, which represents a signed 
number of data precision bits.

sink_sop Input startofpacket 1 Indicates the start of the incoming FFT frame. 

sink_valid Input valid 1 Asserted when data on the data bus is valid. When 
sink_valid and sink_ready are asserted, 
a data transfer takes place. Refer to “Enabling the 
Variable Streaming FFT” on page 3–9.

source_eop Output endofpacket 1 Marks the end of the outgoing FFT frame. Only 
valid when source_valid is asserted.

source_error Output error 2 Indicates an error has occurred either in an 
upstream module or within the FFT module 
(logical OR of sink_error with errors 
generated in the FFT). Refer to Table 3–6 for error 
codes.

source_exp Output data 6 Streaming, burst, and buffered burst architectures 
only. Signed block exponent: Accounts for scaling 
of internal signal values during FFT computation.
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Signals
Table 3–5 shows the component specific signals.

Incorrect usage of the Avalon-ST interface protocol on the sink interface results in a 
error on source_error. Table 3–6 defines the behavior of the FFT when an incorrect 
Avalon-ST transfer is detected. If an error occurs, the behavior of the FFT is undefined 
and you must reset the FFT with reset_n.

source_imag Output data (data precision 
width + growth) 
(1)

Imaginary output data. For burst, buffered burst, 
and streaming FFTs, the output data width is equal 
to the input data width. For variable streaming 
FFTs, the size of the output data is dependent on 
the number of stages defined for the FFT and is 
approximately 2.5 bits per radix 22 stage.

source_ready Input ready 1 Asserted by the downstream module if it is able to 
accept data. 

source_real Output data (data precision 
width + growth) 
(1)

Real output data. For burst, buffered burst, and 
streaming FFTs, the output data width is equal to 
the input data width. For variable streaming FFTs, 
the size of the output data is dependent on the 
number of stages defined for the FFT and is 
approximately 2.5 bits per radix 22 stage.

source_sop Output startofpacket 1 Marks the start of the outgoing FFT frame. Only 
valid when source_valid is asserted.

source_valid Output valid 1 Asserted by the FFT when there is valid data to 
output.

Note to Table 3–4:

(1) Variable streaming FFT only. Growth is 2.5 × (number of stages) = 2.5 × (log4(MAX(fftpts))

Table 3–4. Avalon-ST Signals (Part 2 of 2)

Signal Name Direction Avalon-ST Type Size Description

Table 3–5. Component Specific Signals

Signal Name Direction Size Description

fftpts_in Input log2(maximum 
number of points)

The number of points in this FFT frame. If this value is not specified, the 
FFT can not be a variable length. The default behavior is for the FFT to 
have fixed length of maximum points. Only sampled at SOP.

fftpts_out Output log2(maximum 
number of points)

The number of points in this FFT frame synchronized to the Avalon-ST 
source interface. Variable streaming only.

inverse Input 1 Inverse FFT calculated if asserted. Only sampled at SOP.

clk_ena Input 1 Active-high global clock enable input. If de-asserted, the FFT is disabled.

Table 3–6. Error Handling Behavior

Error source_error Description

Missing SOP 01 Asserted when valid goes high, but there is no start of frame.

Missing EOP 10 Asserted if the FFT accepts N valid samples of an FFT frame, but there is no EOP signal.

Unexpected EOP 11 Asserted if EOP is asserted before N valid samples are accepted.
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A. Block Floating Point Scaling
Introduction
The FFT MegaCore® function uses block-floating-point (BFP) arithmetic internally to 
perform calculations. BFP architecture is a trade-off between fixed-point and full 
floating-point architecture.

Unlike an FFT block that uses floating point arithmetic, a block-floating-point FFT 
block does not provide an input for exponents. Internally, a complex value integer 
pair is represented with a single scale factor that is typically shared among other 
complex value integer pairs. After each stage of the FFT, the largest output value is 
detected and the intermediate result is scaled to improve the precision. The exponent 
records the number of left or right shifts used to perform the scaling. As a result, the 
output magnitude relative to the input level is:

output*2-exponent

For example, if exponent = –3, the input samples are shifted right by three bits, and 
hence the magnitude of the output is output*23.

Block Floating Point
After every pass through a radix-2 or radix-4 engine in the FFT core, the addition and 
multiplication operations cause the data bits width to grow. In other words, the total 
data bits width from the FFT operation grows proportionally to the number of passes. 
The number of passes of the FFT/IFFT computation depends on the logarithm of the 
number of points. Table A–1 on page A–2 shows the possible exponents for 
corresponding bit growth.

A fixed-point architecture FFT needs a huge multiplier and memory block to 
accommodate the large bit width growth to represent the high dynamic range. 
Though floating-point is powerful in arithmetic operations, its power comes at the 
cost of higher design complexity such as a floating-point multiplier and a floating-
point adder. BFP arithmetic combines the advantages of floating-point and fixed-
point arithmetic. BFP arithmetic offers a better signal-to-noise ratio (SNR) and 
dynamic range than does floating-point and fixed-point arithmetic with the same 
number of bits in the hardware implementation.

In a block-floating-point architecture FFT, the radix-2 or radix-4 computation of each 
pass shares the same hardware, with the data being read from memory, passed 
through the core engine, and written back to memory. Before entering the next pass, 
each data sample is shifted right (an operation called "scaling") if there is a carry-out 
bit from the addition and multiplication operations. The number of bits shifted is 
based on the difference in bit growth between the data sample and the maximum data 
sample detected in the previous stage. The maximum bit growth is recorded in the 
exponent register. Each data sample now shares the same exponent value and data bit 
width to go to the next core engine. The same core engine can be reused without 
incurring the expense of a larger engine to accommodate the bit growth. 
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Calculating Possible Exponent Values
The output SNR depends on how many bits of right shift occur and at what stages of 
the radix core computation they occur. In other words, the signal-to-noise ratio is data 
dependent and you need to know the input signal to compute the SNR.

Calculating Possible Exponent Values
Depending on the length of the FFT/IFFT, the number of passes through the radix 
engine is known and therefore the range of the exponent is known. The possible 
values of the exponent are determined by the following equations:

P = ceil{log4N}, where N is the transform length

R = 0 if log2N is even, otherwise R = 1

Single output range = (–3P+R, P+R–4)

Quad output range = (–3P+R+1, P+R–7)

These equations translate to the values in Table A–1.

Implementing Scaling 
To implement the scaling algorithm, follow these steps: 

1. Determine the length of the resulting full scale dynamic range storage register. To 
get the length, add the width of the data to the number of times the data is shifted 
(the max value in Table A–1). For example, for a 16-bit data, 256-point Quad 
Output FFT/IFFT with Max = –11 and Min = –3. The Max value indicates 11 shifts 
to the left, so the resulting full scaled data width is 16 + 11, or 27 bits.

Table A–1. Exponent Scaling Values for FFT / IFFT (Note 1)

N P

Single Output Engine Quad Output Engine

Max (2) Min (2) Max (2) Min (2)

64 3 –9 –1 –8 –4

128 4 –11 1 –10 –2

256 4 –12 0 –11 –3

512 5 –14 2 –13 –1

1,024 5 –15 1 –14 –2

2,048 6 –17 3 –16 0

4,096 6 –18 2 –17 –1

8,192 7 –20 4 –19 1

16,384 7 –21 3 –20 0

Note to Table A–1:

(1) This table lists the range of exponents, which is the number of scale events that occurred internally. For IFFT, the 
output must be divided by N externally. If more arithmetic operations are performed after this step, the division by 
N must be performed at the end to prevent loss of precision.

(2) The maximum and minimum values show the number of times the data is shifted. A negative value indicates shifts 
to the left, while a positive value indicates shifts to the right.
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Implementing Scaling
2. Map the output data to the appropriate location within the expanded dynamic 
range register based upon the exponent value. To continue the above example, the 
16-bit output data [15..0] from the FFT/IFFT is mapped to [26..11] for an exponent 
of –11, to [25..10] for an exponent of –10, to [24..9] for an exponent of –9, and so on.

3. Sign extend the data within the full scale register.

A sample of Verilog HDL code that illustrates the scaling of the output data (for 
exponents –11 to –9) with sign extension is shown in the following example:

case (exp)
6'b110101 : //-11 Set data equal to MSBs 

begin 
full_range_real_out[26:0] <= {real_in[15:0],11'b0};
full_range_imag_out[26:0] <= {imag_in[15:0],11'b0};

end
6'b110110 : //-10 Equals left shift by 10 with sign extension 

begin 
full_range_real_out[26] <= {real_in[15]};
full_range_real_out[25:0] <= {real_in[15:0],10'b0};
full_range_imag_out[26] <= {imag_in[15]};
full_range_imag_out[25:0] <= {imag_in[15:0],10'b0};

end
6'b110111 : //-9 Equals left shift by 9 with sign extension

begin 
full_range_real_out[26:25] <= {real_in[15],real_in[15]};
full_range_real_out[24:0] <= {real_in[15:0],9'b0};
full_range_imag_out[26:25] <= {imag_in[15],imag_in[15]};
full_range_imag_out[24:0] <= {imag_in[15:0],9'b0};

end
.
.
.

endcase

In this example, the output provides a full scale 27-bit word. You need to choose how 
many and which bits should be carried forward in the processing chain. The choice of 
bits determines the absolute gain relative to the input sample level.

Figure A–1 on page A–4 demonstrates the effect of scaling for all possible values for 
the 256-point quad output FFT with an input signal level of 5000H. The output of the 
FFT is 280H when the exponent = –5. The figure illustrates all cases of valid exponent 
values of scaling to the full scale storage register [26..0]. Since the exponent is –5, you 
need to look at the register values for that column. This data is shown in the last two 
columns in the figure. Note that the last column represents the gain compensated data 
after the scaling (0005000H), which agrees with the input data as expected. If you 
want to keep 16 bits for subsequent processing, you can choose the bottom 16 bits that 
result in 5000H. However, if you choose a different bit range, such as the top 16 bits, 
the result is 000AH. Therefore, the choice of bits affects the relative gain through the 
processing chain. 

Because this example has 27 bits of full scale resolution and 16 bits of output 
resolution, choose the bottom 16 bits to maintain unity gain relative to the input 
signal. Choosing the LSBs is not the only solution or the correct one for all cases. The 
choice depends on which signal levels are important. One way to empirically select 
the proper range is by simulating test cases that implement expected system data. The 
output of the simulations should tell what range of bits to use as the output register. If 
the full scale data is not used (or just the MSBs), you must saturate the data to avoid 
wraparound problems.
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Achieving Unity Gain in an IFFT+FFT Pair
Achieving Unity Gain in an IFFT+FFT Pair
Given sufficiently high precision, such as with floating-point arithmetic, it is 
theoretically possible to obtain unity gain when an IFFT and FFT are cascaded. 
However, in BFP arithmetic, special attention must be paid to the exponent values of 
the IFFT/FFT blocks to achieve the unity gain. This section explains the steps required 
to derive a unity gain output from an Altera IFFT/FFT MegaCore pair, using BFP 
arithmetic.

Because BFP arithmetic does not provide an input for the exponent, you must keep 
track of the exponent from the IFFT block if you are feeding the output to the FFT 
block immediately thereafter and divide by N at the end to acquire the original signal 
magnitude.

Figure A–2 on page A–5 shows the operation of IFFT followed by FFT and derives the 
equation to achieve unity gain.

Figure A–1. Scaling of Input Data Sample = 5000H
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Achieving Unity Gain in an IFFT+FFT Pair
where: 

x0 = Input data to IFFT

X0 = Output data from IFFT

N = number of points

data1 = IFFT output data and FFT input data

data2 = FFT output data

exp1 = IFFT output exponent

exp2 = FFT output exponent

IFFTa = IFFT

FFTa = FFT

Any scaling operation on X0 followed by truncation loses the value of exp1 and does 
not result in unity gain at x0. Any scaling operation must be done on X0 only when it 
is the final result. If the intermediate result X0 is first padded with exp1 number of 
zeros and then truncated or if the data bits of X0 are truncated, the scaling information 
is lost.

One way to keep unity gain is by passing the exp1 value to the output of the FFT 
block. The other way is to preserve the full precision of data1×2–exp1 and use this 
value as input to the FFT block. The disadvantage of the second method is a large size 
requirement for the FFT to accept the input with growing bit width from IFFT 
operations. The resolution required to accommodate this bit width will, in most cases, 
exceed the maximum data width supported by the core.

f For more information, refer to the Achieving Unity Gain in Block Floating Point 
IFFT+FFT Pair design example under DSP Design Examples at www.altera.com.

Figure A–2. Derivation to Achieve IFFT/FFT Pair Unity Gain

 
 IFFT  

x0 X0 = IFFT(x0)

      = 
N

1
× IFFTa(x0)  

      = 
N

1
× data1 × 2–exp1  

 
  FFT  

x0 = FFT(X0)  

     = FFT(
N

1
 × data1 × 2–exp1) 

     = 
N

1
× 2–exp1× FFTa(data1) 

     = 
N

1
× 2–exp1× data2 × 2–exp2

     = 
N

1
× 2 –exp2–exp1 × data2 
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Achieving Unity Gain in an IFFT+FFT Pair
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Additional Information
Revision History
The following table shows the revision history for this user guide.

How to Contact Altera
For the most up-to-date information about Altera® products, refer to the following 
table.

Date Version Changes Made

November 2009 9.1 ■ Maintenance update.

■ Added preliminary support for Cyclone III LS, Cyclone IV, and HardCopy IV GX devices.

March 2009 9.0 Added Arria® II GX device support.

November 2008 8.1 No changes.

May 2008 8.0 ■ Added Stratix® IV device support.

■ Changed descriptions of the behavior of sink_valid and sink_ready.

October 2007 7.2 ■ Corrected timing diagrams.

■ Added single precision floating point data representation information.

May 2007 7.1 ■ Added support for Arria™ GX devices.

■ Added new generated files.

December 2006 7.0 Added support for Cyclone® III devices.

December 2006 6.1 ■ Changed interface information.

■ Added variable streaming information.

Contact (Note 1)
Contact 
Method Address

Technical support Website www.altera.com/support 

Technical training Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note:

(1) You can also contact your local Altera sales office or sales representative. 
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Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions that this document uses.

Visual Cue Meaning

Bold Type with Initial Capital 
Letters 

Indicates command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. 

bold type Indicates directory names, project names, disk drive names, file names, file name 
extensions, and software utility names. For example, \qdesigns directory, d: drive, 
and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicates document titles. For example: AN 519: Stratix IV Design Guidelines.

Italic type Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options 
menu. 

“Subheading Title” Quotation marks indicate references to sections within a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1, 
tdi, and input. Active-low signals are denoted by suffix n. Example: resetn.

Indicates command line commands and anything that must be typed exactly as it 
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. 

Also indicates sections of an actual file, such as a Report File, references to parts of 
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI). 

1., 2., 3., and
a., b., c., and so on.

Numbered steps indicate a list of items when the sequence of the items is important, 
such as the steps listed in a procedure. 

■ ■ Bullets indicate a list of items when the sequence of the items is not important. 

1 The hand points to information that requires special attention. 

c A caution calls attention to a condition or possible situation that can damage or 
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you 
injury.

r The angled arrow instructs you to press the enter key.

f The feet direct you to more information about a particular topic. 
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