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Abstract— We present a computation reduction method which [4]. One common feature of the CSE method is to identify
can be used to obtain low-complexity parallel multiplierless common bit-patterns in the set of coefficients and to share

implementation of digital FIR filters, exploring the use of Snift 456 jgentified common subexpressions to reduce the number
inclusive differential (SID) coefficients and common subgxres- of additions

sion elimination (CSE). We introduce a new directed multi- o . . . . .
graph to represent the design space greatly expanded by the The use of shift inclusive differential (SlD) coefficient is
use of SID coefficients. A graph-theoretic algorithm is then proposed in [5]. With the assistance of graph represemtatio
employed to efficiently explore the greatly expanded desigspace. the problem of searching for low-complexity solutions is
Further, we propose a novel CSE method applied to the design mapped into a weighted minimum set cover problem and a

space represented by the graph, which recursively eliminas 2- heuristic algorithm based on a areedv aoproach is given
bit subexpressions with a steepest descent approach for ses g greedy app given.

pression selection. Compared with conventional multiplidess In this paper, we reformulate the idea of SID coefficient
implementation, up to 75% reduction in terms of number of by introducing a new graph representation and mapping the

additions has been achieved. In comparison to a recently repted  optimization problem into an equivalent problem of deter-
%S'foyeer;heﬁ Bast%dlg; available data, our approach achieves anmining a directed minimum spanning tree (DMST) of a
P P - directed multigraph, which is then solved by an optimal grap
|. INTRODUCTION theoretic algorithm. To achieve further complexity redioct

Future battery-powered wireless communication systems 4f€ Propose a CSE method which recursively eliminates 2-bit

expected to provide higher data rates with improved energjfPexpressions with a steepest descent approach for subex-
efficiency. This has made low-power, high-performancetdigi Pression selection.

signal processing (DSP) an important research area. Low- N W ieleinleleleisislutststslelsisislulslsisieisisitulsisisisistehy
complexity design, which aims at reducing the number of o ¢

certain basic operations (e.g., addition) for a given DSR, tiz —(x) —

an attractive approach. The resultant complexity rednaten ~~ ~ Ty Ty Ty T
potentially improve the processing speed of a DSP algorithm Yo -—1)

while achieving high energy-efficiency by removing energy Fig. 1. Transposed direct form of a M-tap FIR filter.

consuming operations. In addition, low-complexity design
generally leads to smaller chip area and thus lower cost, |- A REFORMULATION OF THE IDEA OF SHIFT INCLUSIVE
FIR filtering with a set of fixed coefficients is widely used in DIFFERENTIAL COEFFICIENT
many DSP and communication applications. In the tranposd A NeW graph representation S _
direct form of a FIR filter as shown in Fig. 1, the input The key_@ea bghmd the use of shift inclusive differential
dataz(n) is simultaneously multiplied by the set af filter (SID) coeff_|C|ents is that the re;ult ofz(n) could be reused
coefficeintse = [co, c1, ..., zar-1]", where M is the filter for computinge;z(n) ._Ngte that Ifcix_(n) has _bgen computed
length. Complexity reduction on these multiplications et &/réady, we can obta|LB ciz(n) by swgple wiring. Thus we
multiplication network can lead to significant improvensantcarle)(presij(") :Lz ciw(n)+(c;—2 ci)x(Ln) or c;z(n) =
in various design parameters such as speed, area or power ¢iZ(1) + (¢j +2%¢i)z(n), wherec; + 27¢; are the SID
dissipation. Since multiplication with a constant can bb-suC0efficients [5]. For each value of k, + 2", represents two
stituted by shifts and additions/subtractions and in dadig S!'D coefficients. For a wordlength of W, L could be in the
fully parallel implementation shift operation can be sigpl'@nge from -W to W. Hence for each coefficient, there could
done by wiring, considerable amount of research work hR§ maximally 2(W+1)(M-1) SID coefficients. This greatly
been conducted to reduce the number of additions, thereed}pa”d,S the design space. In conventional CSE methods [1]-
leading to low-complexity designs. 4], optimizations are performedTonIy over the on_gmal set
Common subexpression elimination (CSE) has been ext&@)coefficientsc = [co, c1, ..., zar—1]" . However, by using the

sively studied and various algorithms have been propoded [£'D coefficients, we can explore potentially better sofsian
this greatly expanded design space. In the sequel, coefficie
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the operator -’ may either represent an add or a subtragith an SID coefficient, its weight equals to one plus the
operation. In addition, for clarity we call eaeh with 0 < number of additions required for computirig; — 2%¢;)z(n)

i < (M —1) as anoriginal coefficient to distinguish it from if ¢; —2Z¢; is not zero. Ifc; —2L¢; is zero, then the weight of
the SID coefficients. the corresponding edge is zero. The optimization problem of

This greatly expanded design space can be well representedstructing a possible implementation with minimum numbe
by a directed grapli = (V, E'). The vertex seV’ consists of of additions is to find an acyclic subset of edgesHnthat
all the original coefficients and a virtual vertex,, namely, connects all of the vertices Wi such that the sum of weights
V = {eo,c1,...,cra—1,vn}. The virtual vertexvn has no of these edges is minimized. In [5], this optimization peyhl
physical meaning and is introduced to help formulate theformulated as a weighted minimum set cover problem and a
problem. All the edges of graph are defined as follows. Eachheuristic algorithm based on a greedy approach is developed
SID coefficient,c; — 2L¢;, corresponds to an edge directed In this work, we note that the optimization problem is equiv-
from¢; to ¢;. For different values of L, there would be multiplealent to determining a directed minimum-weighted spanning
edges directed from; to ¢;. There is only one edge directedree (DMST) of the directed multigrap& [6]. We present
from the virtual vertexvn to vertexc; , which represents an optimal graph-theoretic algorithm to solve this problasn
the original coefficient;. HenceG is a directed graph with follows. And we denote the resulting complexity reduction
multiple edges, i.e. a directed multigraph. Each edge&~of algorithm asAlgorithm SD_DMST.
represents either an original coefficient or an SID coefiicie We construct a directed graph; = (V1, E1), where the
In [5], cases whenL < 0 are not considered since it mayvertex setlV; = {0,1,2,..., M} and the edges iF; of G;
lead to re-quantization or increase the actual word-lemgth are defined as follows. We denote an edgé&/ofdirected from
the intermediate computations. However, that argumenobis rvertex: to j by (7, j) and its weight byw;,;. For each ordered
generally true. For example, for an original coefficient= pair of vertices(c;, ¢;) for 0 <4,j < (M — 1), if there is an
000101000, there is no problem with considering right shifteedge directed from; to ¢; in G, there will be exactly one
with . = —1, —2, or —3. HenceL < 0 will also be considered edge(i, j) in graphG; and its weight is the minimum of the
in our proposed method when the tailing bits of an originaeights of all edges directed from to ¢; in G. For each
coefficient are zeros. There are two clear distinctions betw edge directed from the virutal vertex to ¢; in G, there is
our graph representation and that of [5]: (1) Introductidn @ne edgd M, ) and its weight is the same as that of the edge
the virtual vertex automatically takes the original coééfits directed fromnuv to ¢;.
into consideration during our later optimizations; (2) < Assuming we have determined a DMST of G, we can
0 is considered. This makes our graph representation ma@nstruct a DMSTI" of G from the DMST ofG; as follows.
comprehensive. A graph representation of a 4-tap filter For each edgéi, j) of a DMST T3 of Gy with i # M, we
illustrated in Fig. 2. Further, in the following subsectian select an edge aff directed frome; to ¢; with weight being
efficient graph-theoretic algorithm is presented to explitve w;;. For each edgél/, j), we select the edge directed from
low-complexity solutions. vn 10 ¢; in G. Let these selected edges form setGraph

virtual vertex T = (V,S) is a spanning tree ofi due to the one-to-one
correspondence between the verticesGoaind those ofG;.
Additionally we will show there is no spanning tree 6f
that has a total weight smaller than that®f For descriptive
convenience, we denote the total weight of all edges of algrap
H astw(H). Obviously tw(T1) = tw(T).

Suppose there is a spanning tr€é of G with a smaller
total weight tharil’, i.e., tw(T) > tw(T"). We can construct a
B. Algorithm SSD_DMST spanning tred] of G; by mapping each edge @t directed

For each edge of grapliz, we can assign a weightfrom ¢; to ¢; into an edgg(, j) of G; and each edge directed
that represents the associated implementation cost wteen filom vn to ¢; into edge(M, j), for 0 < i,j < (M —1). Due to
corresponding original or SID coefficient is used. In thithe way we constructed the graph, tw(7T") > tw(T7). Thus
work, we focus on minimizing the number of additions atw(71) = tw(T) > tw(T') > tw(TY]). Thereforetw(Ty) >
a high level of abstraction and the implementation cost is/(77), which contradicts the fact th&t is a DMST of G;.
guantified as the number of required additions. CanoniaesignHence, by contradiction we prove that graphas constructed
digit (CSD) number representation [9] is used, although oabove is a DMST ofZ.
proposed approach does not depend on any specific numbérhere exists an optimal graph-theoretic algorithm for find-
representation. The weight of each edge ®&fis defined ing a DMST of G,[7]. For a directed graph with vertices
as follows. For the edge directed fromm to eache; for andm edges, an implementation of the algorithm which runs
0 <i < (M-1),its weight is the number of additions requiredn O(mlogn) time was presented in [8]. In finding a DMST
for computingc;z(n), which is one less than the number obf graphG;, we always select the vertek/ as the root of
nonzero bits of the CSD representationepif ¢; is nonzero. the DMST, which implies that in the DMST ¥ constructed
The weight is zero ifc; is zero. For each edge associateffom the DMST of(G, the virtual vertexon will be its root.

Fig. 2. Directed multigraph for a 4-tap FIR filter.



As will be evident later, this provides us great convenieince elimination. In conventional CSE algorithms, usually sube
constructing the implementation structure of the multiglion pression with the highest frequency is chosen since the atou
network of a FIR filter. of complexity reduction achieved by eliminating a subegpre
sion is directly related to its frequency. However, in ous&a
frequency of the occurrence of a subexpression in all the
edges of graplds is usually not a good measure of how much
The edges of grapltr, corresponding to either original orcomplexity reduction we can achieve if the subexpression is
SID coefficients, could have some common subexpressionschiosen and eliminated. This is mainly because there are so
is then natural to consider if we can identify certain commamany edges in grapl® while just a small portion of the
subexpressions and reduce computational complexity gfirotedges will be chosen to form a spanning treeGofAdopting
subexpression sharing. This leads us to consider using QSE4 steepest descent strategy, in each iteration, amongaall th
further complexity reduction. However, existing CSE metho subexpressions that occur at least twice, we choose the-sube
such as proposed in [1]-[4] are not directly applicable singression whose elimination leads to the greatest complexit
they are applied to a set of fixed and known coefficients, i.eeduction. This is elaborated as follows. In each iteratioe
the set oforiginal coefficients. In this work, we are to applyfirst search for all 2-bit subexpressions which occur attleas
CSE to a design space represented by a directed multigrapite, and put them into a set &FE = {s1, s2, 83, ...}. If
G. Each spanning tree aff corresponds to a possible filterwe can not find any 2-bit subexpression occurring at least
implementation and its edges form a set of coefficientseeithtwice, i.e., the sef E is empty, the CSE process is terminated.
original or SID. Hence we need to find a set of subexpressioDsherwise, for each subexpression let graphH; = G and
and a spanning tree ¢f to minimize the hardware complexity. eliminate s; in all edges of graphH; as described above,
One way is to enumerate all the spanning treeg;ofind update the weights of all edges @&f; by decreasing the
on each spanning tree 6f, we can apply conventional CSEedge weight by the number of occurrencesspfn the edge,
algorithms since the coefficients in each spanning tree of détermine the DMST ofH; as described in section Il, and
are fixed and known. Then the spanning tree with the loweasilculate the complexity reduction in terms of the number of
complexity can be chosen for implementation. However, thelditions as a result of eliminating, which is denoted by
number of spanning trees @ is very large and increasesA,. Then determine: = argmin A;. If A, = 0, meaning

_exponentiall_y with the r.‘”_”_‘ber of filter coefficients. Thus_iEhat there is no reduction thzrough subexpression eliminati
is computationally prohibitive to enumerate all the spagni ;. oo the CSE process. Otherwiese, put subexpression
trees ﬁ.fG' K hod which ) {nto a table denoted aSSE _table, updateG by letting G =
In this work we propose a CSE method which recursively, "o 44 into the next teration with this update graphThe
eliminates 2-bit subexpression with a steepest descent Aulting algorithm is named aSgorithm SID_CSE, which is
proach for subexpres_spn selgchon. , i summarized in Fig. 3CSE_table contains the subexpressions
A 2-bit subexpression is defined as a bit-pattern with eyacty, . have been eliminated”’ S E_table| denotes the number
two nonzero bits, where a nonzero bit is an element of S@Fsubexpressions i@ SE table.
{1,-1,2, -2,3,-3, ..}.In eIi.minating each occurrence ofthe  The final outcome ofAlgorithm SID.CSE is a set of
subexpression, we replace it b.y an m_teger k or -k in place Qlfjbexpressions contained ©SE_table and a DMST ofG.
the secon_d of the two nozero bits m_aklng up the subexpressin .o the DMST of grapli corresponds to a low-complexity
and the first of the two nonzero bits by zero. In the sequ plementation of the multiplication network of the filteve

we will refer to this way of elimination aslimination by k. define it as animplementation tree. Note that the root of
We usek = 2 to represent the first eliminated subexpressio[he implementation tree is the virtual vertex. Hence, for
k = 3 for the second eliminated subexpression, and so on._|f

h f th b oo | vertexc; of the implementation tree, if its parent is,
the occurrence of the subexpression Is exactly same as gﬁ@n ciz(n) is implemented as it is, i.e., using the original
subexpression, then it is replaced ky If the occurrence

) i it coefficient; Otherwise, if the parent of is ¢;, ¢;xz(n) is im-
is the complementary of the subexpression, it is replacB mented using the SID coefficient—2%¢; corresponding to
by —k. This way of elimination can be best demonstrat ;

X - ) ; el‘flne specific edge directed from to ¢; in the implementation
by an example. Consider three coefficients, either orignal goo 1,5 an implementation structure of the filter can be
SID, in the CSD formatg; = 10101001, as = 10101000

_ readily derived from the implementation tree.

and a3 = 00000101, where 1 represents—1. Suppose at
the first iteration bit-pattern01 is selected for elimination. IV. NUMERICAL RESULTS
Then afterelimination by 2, a; = 00201001, az = 00201000 We first take 12 example linear-phase filters with filter
and az = 00000002, where?2 represents-2. In the second length ranging from 21 to 161 and wordlength of 16. The
iteration bit-patterr201 is selected and aftelimination by 3, filter types include equi-ripple, least-square, low-passl a
a; = 00003001, a2 = 00003000, andaz = 00000002 , where band-pass. Three techniques are considered, i.e., singile C
3 represents-3. implementation where the filter coefficients are encoded in

Since in each iteration many different subexpressions wliSD format, SIDDMST and SIDCSE. The complexity in
occur, a criterion much be used to select the subexpressionterms of the number of addition is shown in Fig. 4. In com-

Ill. | NCORPORATINGCOMMON SUBEXPRESSION
ELIMINATION



1. Construct? and find a DMSTT of G. cost = tw(T).
SetCSE_table empty,noCSE =0 andk = 2.
2. while noCSE =0
(a) Find the 2-bit subexpressions in the edges;of
occurring at least twice. Put them into set
SE = {81, 52,83, }
(b) if SE is empty,then noCSE = 1.
else
for each subexpression € SE
H; = G. Eliminatess; in edges ofH; by k.
Update weights of edges df;.
Find a DMST ofH;, denoted ag;.
A; = cost — tw(T;) — |CSE_table| — 1.
Determinen = argmin A;.

if A,, =0, then noCSE = 1.

else
Puts,, into CSE_table. G = H,, andT = T,,.
cost = tw(T,) + |CSE_table| andk = k + 1.

tions ascost and CSE _table.

3. Outputimplementation tree asT', the number of addi-

Fig. 3. Algorithm SIDCSE

TABLE |
COMPARISON WITHPASKO'SCSEALGORITHM.

M w CSD | PaSko| SID_DMST SID_CSE
S1 25 9 11 6 6 6
S2 60 14 57 32 29 26
L1 121 | 17 145 58 61 51
L2 63 13 49 23 24 22
L3 36 11 16 5 5 5

strates that our proposed methods are effective for general
MCM operations.

PaSkoet al proposed a CSE algorithm in [4], which achieves
comparable or better results than other CSE methods prdpose
in [1]-[3] . We compare our proposed method with Pasko’s
algorithm based on the data included in [4]. We apply our
methods to the filters that are denoted as S1, S2, L1, L2
and L3 in [4]. The results are shown in Table |, wheve
denotes the filter length arld” denotes the wordlength of the
filter coefficients. For all the filters, the proposed SUSE
algorithm yields similar or better results. In particular, filter
L1 and S2, 12% and 19% improvement has been achieved,
respectively. The improvement can be attributed to the fact
that, in our proposed SITSE algorithm, common subexpres-
sion elimination is performed over the design space that has

parison to the simple CSD implementation (CSD), algorithnf€n greatly expanded through using SID coefficients. Aad th
SID.DMST and SIDCSE achieve 44%-69% reduction andgXPanded design space is represented by a directed mpltigra

53%-73%reduciton, respectively.
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Fig. 4. Complexity reduction on 12 example filters.
[mcsD mSID_DMST OSID_CSE
200 o1 R PR

o o
S o

o
o

=]
=]

Number of Additions

BN WA g oo
o
=]

o
o o

20 40 60 80 100 120 140 160
Length of Random Vectors

Fig. 5. Complexity reduction on several random vectors.

and explored by an efficient graph-theoretic algorithm.

V. CONCLUSIONS

We present a novel low-complexity design method for figital
FIR filters. We reformulate the idea of SID coefficients by
introducing a new graph representation and employing an
efficient graph-theoretic algorithm. Further, we proposed
CSE method which recursively eliminates 2-bit subexpogssi
with a steepest descent approach. Compared with convahtion
multiplierless implementation, up t65% reduction in terms
of number of additions has been achieved. In comparison with
a recently reported CSE method based on available data, our
approach achieves an improvement upl $8%.
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