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Abstract— We present a computation reduction method which
can be used to obtain low-complexity parallel multiplierless
implementation of digital FIR filters, exploring the use of shift
inclusive differential (SID) coefficients and common subexpres-
sion elimination (CSE). We introduce a new directed multi-
graph to represent the design space greatly expanded by the
use of SID coefficients. A graph-theoretic algorithm is then
employed to efficiently explore the greatly expanded designspace.
Further, we propose a novel CSE method applied to the design
space represented by the graph, which recursively eliminates 2-
bit subexpressions with a steepest descent approach for subex-
pression selection. Compared with conventional multiplierless
implementation, up to 75% reduction in terms of number of
additions has been achieved. In comparison to a recently reported
CSE method based on available data, our approach achieves an
improvement up to 19%.

I. I NTRODUCTION

Future battery-powered wireless communication systems are
expected to provide higher data rates with improved energy-
efficiency. This has made low-power, high-performance digital
signal processing (DSP) an important research area. Low-
complexity design, which aims at reducing the number of
certain basic operations (e.g., addition) for a given DSP task, is
an attractive approach. The resultant complexity reduction can
potentially improve the processing speed of a DSP algorithm
while achieving high energy-efficiency by removing energy
consuming operations. In addition, low-complexity design
generally leads to smaller chip area and thus lower cost.

FIR filtering with a set of fixed coefficients is widely used in
many DSP and communication applications. In the tranposed
direct form of a FIR filter as shown in Fig. 1, the input
datax(n) is simultaneously multiplied by the set ofM filter
coefficeintsc = [c0, c1, ..., xM−1]

T , where M is the filter
length. Complexity reduction on these multiplications in the
multiplication network can lead to significant improvements
in various design parameters such as speed, area or power
dissipation. Since multiplication with a constant can be sub-
stituted by shifts and additions/subtractions and in dedicated
fully parallel implementation shift operation can be simply
done by wiring, considerable amount of research work has
been conducted to reduce the number of additions, thereby
leading to low-complexity designs.

Common subexpression elimination (CSE) has been exten-
sively studied and various algorithms have been proposed [1]-
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[4]. One common feature of the CSE method is to identify
common bit-patterns in the set of coefficients and to share
those identified common subexpressions to reduce the number
of additions.

The use of shift inclusive differential (SID) coefficient is
proposed in [5]. With the assistance of graph representation,
the problem of searching for low-complexity solutions is
mapped into a weighted minimum set cover problem and a
heuristic algorithm based on a greedy approach is given.

In this paper, we reformulate the idea of SID coefficient
by introducing a new graph representation and mapping the
optimization problem into an equivalent problem of deter-
mining a directed minimum spanning tree (DMST) of a
directed multigraph, which is then solved by an optimal graph-
theoretic algorithm. To achieve further complexity reduction,
we propose a CSE method which recursively eliminates 2-bit
subexpressions with a steepest descent approach for subex-
pression selection.
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Fig. 1. Transposed direct form of a M-tap FIR filter.

II. A REFORMULATION OF THE IDEA OF SHIFT INCLUSIVE

DIFFERENTIAL COEFFICIENT

A. A new graph representation
The key idea behind the use of shift inclusive differential

(SID) coefficients is that the result ofcix(n) could be reused
for computingcjx(n) . Note that ifcix(n) has been computed
already, we can obtain2Lcix(n) by simple wiring. Thus we
can expresscjx(n) = 2Lcix(n)+(cj−2Lci)x(n) or cjx(n) =
−2Lcix(n) + (cj + 2Lci)x(n), wherecj ± 2Lci are the SID
coefficients [5]. For each value of L,cj ± 2Lci represents two
SID coefficients. For a wordlength of W, L could be in the
range from -W to W. Hence for each coefficient, there could
be maximally 2(W+1)(M-1) SID coefficients. This greatly
expands the design space. In conventional CSE methods [1]-
[4], optimizations are performed only over the original set
of coefficientsc = [c0, c1, ..., xM−1]

T . However, by using the
SID coefficients, we can explore potentially better solutions in
this greatly expanded design space. In the sequel, coefficient
cj − 2Lci will be used to represent an SID coefficient, and



the operator ’-’ may either represent an add or a subtract
operation. In addition, for clarity we call eachci with 0 ≤
i ≤ (M − 1) as anoriginal coefficient to distinguish it from
the SID coefficients.

This greatly expanded design space can be well represented
by a directed graphG = (V, E). The vertex setV consists of
all the original coefficients and a virtual vertexvn, namely,
V = {c0, c1, ..., cM−1, vn}. The virtual vertexvn has no
physical meaning and is introduced to help formulate the
problem. All the edges of graphG are defined as follows. Each
SID coefficient,cj − 2Lci, corresponds to an edge directed
from ci to cj . For different values of L, there would be multiple
edges directed fromci to cj . There is only one edge directed
from the virtual vertexvn to vertex ci , which represents
the original coefficientci. HenceG is a directed graph with
multiple edges, i.e. a directed multigraph. Each edge ofG

represents either an original coefficient or an SID coefficient.
In [5], cases whenL < 0 are not considered since it may
lead to re-quantization or increase the actual word-lengthof
the intermediate computations. However, that argument is not
generally true. For example, for an original coefficientci =
000101000, there is no problem with considering right shifts
with L = −1, −2, or−3. HenceL < 0 will also be considered
in our proposed method when the tailing bits of an original
coefficient are zeros. There are two clear distinctions between
our graph representation and that of [5]: (1) Introduction of
the virtual vertex automatically takes the original coefficients
into consideration during our later optimizations; (2)L <

0 is considered. This makes our graph representation more
comprehensive. A graph representation of a 4-tap filter is
illustrated in Fig. 2. Further, in the following subsection, an
efficient graph-theoretic algorithm is presented to explore the
low-complexity solutions.
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Fig. 2. Directed multigraph for a 4-tap FIR filter.

B. Algorithm SID DMST
For each edge of graphG, we can assign a weight

that represents the associated implementation cost when the
corresponding original or SID coefficient is used. In this
work, we focus on minimizing the number of additions at
a high level of abstraction and the implementation cost is
quantified as the number of required additions. Canonic signed
digit (CSD) number representation [9] is used, although our
proposed approach does not depend on any specific number
representation. The weight of each edge ofG is defined
as follows. For the edge directed fromvn to each ci for
0 ≤ i ≤ (M−1), its weight is the number of additions required
for computingcix(n), which is one less than the number of
nonzero bits of the CSD representation ofci if ci is nonzero.
The weight is zero ifci is zero. For each edge associated

with an SID coefficient, its weight equals to one plus the
number of additions required for computing(cj − 2Lci)x(n)
if cj −2Lci is not zero. Ifcj −2Lci is zero, then the weight of
the corresponding edge is zero. The optimization problem of
constructing a possible implementation with minimum number
of additions is to find an acyclic subset of edges inE that
connects all of the vertices inV such that the sum of weights
of these edges is minimized. In [5], this optimization problem
is formulated as a weighted minimum set cover problem and a
heuristic algorithm based on a greedy approach is developed.

In this work, we note that the optimization problem is equiv-
alent to determining a directed minimum-weighted spanning
tree (DMST) of the directed multigraphG [6]. We present
an optimal graph-theoretic algorithm to solve this problemas
follows. And we denote the resulting complexity reduction
algorithm asAlgorithm SID DMST.

We construct a directed graphG1 = (V1, E1), where the
vertex setV1 = {0, 1, 2, ..., M} and the edges inE1 of G1

are defined as follows. We denote an edge ofG1 directed from
vertexi to j by (i, j) and its weight bywij . For each ordered
pair of vertices(ci, cj) for 0 ≤ i, j ≤ (M − 1), if there is an
edge directed fromci to cj in G, there will be exactly one
edge(i, j) in graphG1 and its weight is the minimum of the
weights of all edges directed fromci to cj in G. For each
edge directed from the virutal vertexnv to ci in G, there is
one edge(M, i) and its weight is the same as that of the edge
directed fromnv to ci.

Assuming we have determined a DMSTT1 of G1, we can
construct a DMSTT of G from the DMST ofG1 as follows.
For each edge(i, j) of a DMST T1 of G1 with i 6= M , we
select an edge ofG directed fromci to cj with weight being
wij . For each edge(M, j), we select the edge directed from
vn to cj in G. Let these selected edges form setS. Graph
T = (V, S) is a spanning tree ofG due to the one-to-one
correspondence between the vertices ofG and those ofG1.
Additionally we will show there is no spanning tree ofG

that has a total weight smaller than that ofT . For descriptive
convenience, we denote the total weight of all edges of a graph
H as tw(H). Obviouslytw(T1) = tw(T ).

Suppose there is a spanning treeT ′ of G with a smaller
total weight thanT , i.e., tw(T ) > tw(T ′). We can construct a
spanning treeT ′

1
of G1 by mapping each edge ofT ′ directed

from ci to cj into an edge(i, j) of G1 and each edge directed
from vn to cj into edge(M, j), for 0 ≤ i, j ≤ (M−1). Due to
the way we constructed the graphG1, tw(T ′) ≥ tw(T ′

1
). Thus

tw(T1) = tw(T ) > tw(T ′) ≥ tw(T ′

1
). Thereforetw(T1) >

tw(T ′

1
), which contradicts the fact thatT1 is a DMST ofG1.

Hence, by contradiction we prove that graphT as constructed
above is a DMST ofG.

There exists an optimal graph-theoretic algorithm for find-
ing a DMST of G1[7]. For a directed graph withn vertices
andm edges, an implementation of the algorithm which runs
in O(m logn) time was presented in [8]. In finding a DMST
of graphG1, we always select the vertexM as the root of
the DMST, which implies that in the DMST ofG constructed
from the DMST ofG1, the virtual vertexvn will be its root.



As will be evident later, this provides us great conveniencein
constructing the implementation structure of the multiplication
network of a FIR filter.

III. I NCORPORATINGCOMMON SUBEXPRESSION

ELIMINATION

The edges of graphG, corresponding to either original or
SID coefficients, could have some common subexpressions. It
is then natural to consider if we can identify certain common
subexpressions and reduce computational complexity through
subexpression sharing. This leads us to consider using CSE for
further complexity reduction. However, existing CSE methods
such as proposed in [1]-[4] are not directly applicable since
they are applied to a set of fixed and known coefficients, i.e.,
the set oforiginal coefficients. In this work, we are to apply
CSE to a design space represented by a directed multigraph
G. Each spanning tree ofG corresponds to a possible filter
implementation and its edges form a set of coefficients, either
original or SID. Hence we need to find a set of subexpressions
and a spanning tree ofG to minimize the hardware complexity.

One way is to enumerate all the spanning trees ofG and
on each spanning tree ofG, we can apply conventional CSE
algorithms since the coefficients in each spanning tree of G
are fixed and known. Then the spanning tree with the lowest
complexity can be chosen for implementation. However, the
number of spanning trees ofG is very large and increases
exponentially with the number of filter coefficients. Thus it
is computationally prohibitive to enumerate all the spanning
trees ofG.

In this work we propose a CSE method which recursively
eliminates 2-bit subexpression with a steepest descent ap-
proach for subexpression selection.

A 2-bit subexpression is defined as a bit-pattern with exactly
two nonzero bits, where a nonzero bit is an element of set
{1,−1, 2,−2, 3,−3, ...}. In eliminating each occurrence of the
subexpression, we replace it by an integer k or -k in place of
the second of the two nozero bits making up the subexpression
and the first of the two nonzero bits by zero. In the sequel,
we will refer to this way of elimination aselimination by k.
We usek = 2 to represent the first eliminated subexpression,
k = 3 for the second eliminated subexpression, and so on. If
the occurrence of the subexpression is exactly same as the
subexpression, then it is replaced byk. If the occurrence
is the complementary of the subexpression, it is replaced
by −k. This way of elimination can be best demonstrated
by an example. Consider three coefficients, either orignal or
SID, in the CSD format,a1 = 10101̄001, a2 = 1̄01̄01000
and a3 = 00000101, where 1̄ represents−1. Suppose at
the first iteration bit-pattern101 is selected for elimination.
Then afterelimination by 2, a1 = 00201̄001, a2 = 002̄01000
and a3 = 00000002, where 2̄ represents−2. In the second
iteration bit-pattern201̄ is selected and afterelimination by 3,
a1 = 00003001, a2 = 00003̄000, anda3 = 00000002 , where
3̄ represents−3.

Since in each iteration many different subexpressions will
occur, a criterion much be used to select the subexpression for

elimination. In conventional CSE algorithms, usually subex-
pression with the highest frequency is chosen since the amount
of complexity reduction achieved by eliminating a subexpres-
sion is directly related to its frequency. However, in our case,
frequency of the occurrence of a subexpression in all the
edges of graphG is usually not a good measure of how much
complexity reduction we can achieve if the subexpression is
chosen and eliminated. This is mainly because there are so
many edges in graphG while just a small portion of the
edges will be chosen to form a spanning tree ofG. Adopting
a steepest descent strategy, in each iteration, among all the
subexpressions that occur at least twice, we choose the subex-
pression whose elimination leads to the greatest complexity
reduction. This is elaborated as follows. In each iteration, we
first search for all 2-bit subexpressions which occur at least
twice, and put them into a set asSE = {s1, s2, s3, ...}. If
we can not find any 2-bit subexpression occurring at least
twice, i.e., the setSE is empty, the CSE process is terminated.
Otherwise, for each subexpressionsi, let graphHi = G and
eliminate si in all edges of graphHi as described above,
update the weights of all edges ofHi by decreasing the
edge weight by the number of occurrences ofsi in the edge,
determine the DMST ofHi as described in section II, and
calculate the complexity reduction in terms of the number of
additions as a result of eliminatingsi, which is denoted by
∆i. Then determinen = argmin

i

∆i. If ∆n = 0, meaning

that there is no reduction through subexpression elimination,
terminate the CSE process. Otherwiese, put subexpressionsn

into a table denoted asCSE table, updateG by letting G =
Hn and go into the next iteration with this update graphG. The
resulting algorithm is named asAlgorithm SID CSE, which is
summarized in Fig. 3.CSE table contains the subexpressions
that have been eliminated.|CSE table| denotes the number
of subexpressions inCSE table.

The final outcome ofAlgorithm SID CSE is a set of
subexpressions contained inCSE table and a DMST ofG.
Since the DMST of graphG corresponds to a low-complexity
implementation of the multiplication network of the filter,we
define it as animplementation tree. Note that the root of
the implementation tree is the virtual vertexvn. Hence, for
a vertexci of the implementation tree, if its parent isvn,
then cix(n) is implemented as it is, i.e., using the original
coefficient; Otherwise, if the parent ofci is cj , cix(n) is im-
plemented using the SID coefficientci−2Lcj corresponding to
the specific edge directed fromcj to ci in the implementation
tree. Thus an implementation structure of the filter can be
readily derived from the implementation tree.

IV. N UMERICAL RESULTS

We first take 12 example linear-phase filters with filter
length ranging from 21 to 161 and wordlength of 16. The
filter types include equi-ripple, least-square, low-pass and
band-pass. Three techniques are considered, i.e., simple CSD
implementation where the filter coefficients are encoded in
CSD format, SIDDMST and SIDCSE. The complexity in
terms of the number of addition is shown in Fig. 4. In com-



1. ConstructG and find a DMSTT of G. cost = tw(T ).
SetCSE table empty,noCSE = 0 andk = 2.

2. while noCSE = 0
(a) Find the 2-bit subexpressions in the edges ofG

occurring at least twice. Put them into set
SE = {s1, s2, s3, ...}.

(b) if SE is empty,then noCSE = 1.
else

for each subexpressionsi ∈ SE

Hi = G. Eliminatesi in edges ofHi by k.
Update weights of edges ofHi.
Find a DMST ofHi, denoted asTi.
∆i = cost − tw(Ti) − |CSE table| − 1.

Determinen = argmin
i

∆i.

if ∆n = 0, then noCSE = 1.
else

Put sn into CSE table. G = Hn andT = Tn.
cost = tw(Tn) + |CSE table| andk = k + 1.

3. Outputimplementation tree asT , the number of addi-
tions ascost andCSE table.

Fig. 3. Algorithm SIDCSE

parison to the simple CSD implementation (CSD), algorithms
SID DMST and SIDCSE achieve 44%-69% reduction and
53%-73%reduciton, respectively.
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Fig. 4. Complexity reduction on 12 example filters.
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Fig. 5. Complexity reduction on several random vectors.

Our proposed method is also applicable to general multiple
constant multiplication (MCM) operations as defined in [1]
since the multiplication network of a FIR filter performs
exactly a MCM operation. To test the effectiveness of our
proposed methods on general MCM operations, we applied
our proposed methods to random vectors with length ranging
from 20 to 160 and the results are shown in Fig. 5. Com-
pared with simple CSD implementation (CSD), application
of SID DMST algorithm leads to 45%-60% reduction while
algorithm SIDCSE leads to 65%-75% reduction. This demon-

TABLE I

COMPARISON WITH PAŠKO’ S CSEALGORITHM .

M W CSD Paško SID DMST SID CSE
S1 25 9 11 6 6 6
S2 60 14 57 32 29 26
L1 121 17 145 58 61 51
L2 63 13 49 23 24 22
L3 36 11 16 5 5 5

strates that our proposed methods are effective for general
MCM operations.

Paškoet al proposed a CSE algorithm in [4], which achieves
comparable or better results than other CSE methods proposed
in [1]-[3] . We compare our proposed method with Paško’s
algorithm based on the data included in [4]. We apply our
methods to the filters that are denoted as S1, S2, L1, L2
and L3 in [4]. The results are shown in Table I, whereM

denotes the filter length andW denotes the wordlength of the
filter coefficients. For all the filters, the proposed SIDCSE
algorithm yields similar or better results. In particular,for filter
L1 and S2, 12% and 19% improvement has been achieved,
respectively. The improvement can be attributed to the fact
that, in our proposed SIDCSE algorithm, common subexpres-
sion elimination is performed over the design space that has
been greatly expanded through using SID coefficients. And the
expanded design space is represented by a directed multigraph
and explored by an efficient graph-theoretic algorithm.

V. CONCLUSIONS
We present a novel low-complexity design method for figital

FIR filters. We reformulate the idea of SID coefficients by
introducing a new graph representation and employing an
efficient graph-theoretic algorithm. Further, we proposeda
CSE method which recursively eliminates 2-bit subexpressions
with a steepest descent approach. Compared with conventional
multiplierless implementation, up to75% reduction in terms
of number of additions has been achieved. In comparison with
a recently reported CSE method based on available data, our
approach achieves an improvement up to19%.
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