
I

(

I
I

,
,

PROCEEDINGS OF SPIE

Independent Component
Analyses, Wavelets, Neural
Networks, Biosystems, and
Nanoengineering IX

Harold Szu
Uyl Dal
Editor

27-29 April 2011
Orlando. florida, United States

Sponsored and Published by
SPIE

Proceedings of SPIE, 0277-786X, v. 8058

Volume 8058

SF'IE IS on inlernoliol'l(ll sodely advancing on interdjsci~ lill{lry approach to the Kience and oppr/Co l;on 01 liQhL

B058 19 Gaussian graphical modeling reveals specific lipid correlaHons In glioblastoma celis
[8058-43[
N. S. Mueller. Max Planck Institut of Biochemistry (Germany); J. Krumsiek. F. J. Theis. Helmholtz
Zentrum MOnchen GmbH (Germany); C. Bbhm. ludwig-Maximilians-Univ. MOnchen
(Germany); A Meyer-Base. The Florida State Univ. (United Stotes)

8058 1 A Gut feeling is elecltic (8058-44]
J. Fomiloni. U.S. Nmy Night Vision & Electronic Sensors Directorate (United States)

BOS8 I B Reconstruction algorithms for optoacoustic Imaging based on fiber optic detectors
[8058-45]
H. lamela, G. Diaz-Tendero, R. Gutierrez. D. Gallego, Univ. Carlos III de Madrid (Spain)

SESSION 13 ENGINEERING SYSTEM OF SYSTEMS AND APPLICATION

8058 1 C NIOS II processor-based acceleration of motion compensation techniques (8058-46]
D. Gonzalez, Univ. Complutense de Madrid (Spain); G. Botello, Univ. Complutense de
Madrid (Spain) and Florida State Univ. (United States); S. Mookhe~ee. U. Meyer-Base,
A Meyer-Base, Florida State Univ. (United States)

8058 10 PCA method for automated detection of mispronounced words [8058-47]
Z. Ge, S. R. Sharma. M. J. T. Smith, Purdue Univ. (United States)

B058 1 E Optical flow optimization using parallel genetic algorithm [B058-48)
O. Zovolo-Romero. G. Botello. A Meyer-Bose. U. Meyer Base. The Florida Stote Univ. (United
States)

B058 1 F Intellectual property prot~tion (IPP) using obfuscation In C, VHDl, and Verilog coding
[8058-49]
U. Meyer-Base. The Florida State Univ. (United States): E. Costilla, Univ. de Granado (Spoin);
G. Botello. The Flooda State Univ. (United States); l. Parrilla, A Gordo. Univ. de Granada
(Spain)

8058 I G Polarimetric detection for slowly moving/stationary targets in Inhomogeneous environments
[8058-SO]
C. Hsu, H. Mendelson, A- Burgstahler. D. Hibbard, J. Faist, Trident Systems Inc. (United States)

8058 1 H Independent component analysis (ICA) of fused wavelet coefficients of thermal and visual
Images for human face recognition [8058-171
M. K. Bhowmik. Tripura Univ.(lndia); D. Bhaltacharjee. D. K. Basu , M. Nasipuri. Jadavpur Univ.
(Indio)

SESSION 14 SYSTEMS BIOLOGY PIONEER AWARD

B058 II Cenular defense processes regulated by pathogen-elicHed receptor signaling {Invited
Paper] [8058-511
R. Wu. A. Goldsipe. D. B. Schauer, D. A lauffenburger, Massachusetts Institute of Technology
(United States)

vii

Uwe Mery-baese
Highlight

>

Intellectual Property Protection (IPP) using
Obfuscation in C, VHDL, and Verilog Coding

Uwe Meyer~Baese*a, Encami Castillob
, Guillenno Botellaa, L. Parrillab, and Antonio Garciab

'Department of E&C Eng., Florida State University, Tallahassee, FL, USA 32310
bDpto. de Electronica y Tecnoiogia de Computadores" Univ. of Granada, 18071 Granada, SPAIN

ABSTRACT

One of the big challenges in the design of embedded systems today is how to combine design reuse and intellectual
propeny protection (IPP). Strong IP schemes such as hardware dongle or layout watermarking usually have a very
limited design reuse for different FPGAIASIC design platfonns. Some techniques also do not fit well with protection of
software in embedded microprocessors. Another approach to rpp that allows an easy design reuse and has low costs but
a somehow reduced security is code "obfuscation." Obfuscation is a method to hide the design concept, or program
algorithm included in the C or HOL source by using one or more transformations of the original code. Obfuscation
methods include, for instance, renaming identifiers, removing comments or formatting of the code. More sophisticated
obfuscation methods include data splitting or merging, and control flow changes. This paper shows strength and
weakness of method obfuscating C, VHDL and Veri log code.

Keywords: FPGA, IPP, Obfuscation, VHDL, Verilog, ANSI-C

1. INTRODUCTION

The rapid advance in the design and development of digital integrated circuits, combined with the hard competition in
the electronics market, is leading to a substantial change in the design strategies allowing the optimization of company
resources. These strategies are based on reusable modules, so called Intellectual Property cores (IP cores), or Virtual
Components (VC)I.2. These concepts help to reduce development time and costs of up to 70% according to VSI
Alliance3

. Thus, IP-based design has become a major tool within the Ie industry. These new design strategies provide
precious competitive advaritages due to their reduced development time. However, sharing IP cores poses significant
security concerns, one of the main being the intellectual property protection of those shared modules4

• IP modules
require author and owner claiming mechanisms to ensure that content will nol be illegally used or redistributed by
customers who break license agreements.

As motivation consider that the U.S. Chamber of Commerce has published estimates thaI IP theft costs U.S. companies
between $200 to $250 billion a year, as well as 750,000 jobs. The World Customs Organization estimated that pirated
and counterfeited goods make up $600 billion annually.

The InleIlectual Property Protection (IPP) usually can be split into three major challengesS
, namely

)- PIRACY is the illegal copying or resale of goods.

,. REVERSE ENGINEERING is the understanding of the idea, algorithm, and code.

,. TAMPERING is the change, modifying or extraction of IP cores.

The vsr Alliance4 has proposed the use of three methods for proper protection of IP cores:

,. DETERRENT APPROACHES try to stop illegal distribution by using patents, license agreements,
copyrights, trade secrets, and obfuscation. Obfuscations are transformations of the source code to make
reverse engineering difficult and can use lexical, control, data or anti-disassembly transformations.

·umeyerbaese@fsu.edu; phone850-410-6220: (ax 850-410·6479

Independent Component Analyses, Wavelets. Neural Networlt;s, Biosystems. and Nanoengineering IX.
edited by Harold Szu. Uyi Dai. Proc. of SPIE Vol. 8058. 80581F ·@2011 SPIE

eee code: 0277-786X111/$18 . doi: 10.1117112.684142

Proc. of SPIE Vol. 8058 80581 F-l

.

F
)'> PROTECTION APPROACHES prevent the unauthorized usage of the IP physically by license

agreements, encryption, hardware dongle, and tamper-proofing, i.e., malfunction when modification is
detected.

);> DETECTION APPROACHES detect and trace both legal and illegal usages of the designs by means of
digital signatures, such as digital fingerprinting and digital watermarking. Watermarks can be static (Ie
layout, IPP@HDL.orembedded figure in Ie masks), or dynamic (e.g., Easter egg), Fingerprinting is used
to add a unique customer 10 to identify the user at fau lt when IP is illegally used.

Much consideration has been ~iven on watermarking6-1' and protection approaches in the past, see Fig. I. Anoth~r major
focus has been the enc!)'P.lion 7-19 of software in the XOM approach via a cryplO controller inserted between program
memory and processo,w-ll. For embedded systems, however, we have to consider that a factor of 100 more embedded
processors systems with hard cost constraints are produced than powerful general purpose processors (GPP). Embedded
processors are designed by small teams with hard time-to-market constrainls24-2J. XOM can nol be used wilh standard
embedded system configurations provided by Xilinx or Altcra. Little effort so far has been the obfuscation of HDL or C
source code. This paper reports on obfuscation methods for HDL and C code and their cost penalties.

(a) (b) (e)

Figure 1. Florida State logo embedded in
layout orthe Silicon Graphics MIPS
R 12000 microprocessor
[http://micro.Ol;lllnct.rsu.edulc!'Ci! turesl
technicaUpad:.aging.html). (a) The
microprocessor chip in its ceramic
package (b) Area on the chip where the
logos reside with 500x magnification, (c)
2000x magnification (0 2002 IEEE6

).

2. SYSTEM DESIGN WITH IP CORES

With the increased demand of lime-to-market and the large complexity of leday's designs, the reuse of IP block has
become and integral design principle. Thc designer slntggles with producing enough gates per day such a multi-million
system on a chip (SOC) design is completed on time. Today most new designs with low to medium volumes are based
on FPGA technolo~l) and classic watermarking techniques (see Fig. I) are no longer viable. For an IP provider the
balancing between blocks that can easi~ be reused and a secure intellectual property protection (IPP) becomes a
challenging task. IPs are usually provided 1 in one of the following 3 forms:

I. A SOFT CORE is a behavioral description of a component, which needs to be synthesized with ASIClFPGA
vendor tools. The block is typically provided in a hardware description language (HOL) like VHDL or Verilog,
which allows easy modification by the user, even new features can be added or deleted.

2. A PARAMETERIZED CORE is a slntctural description of a component. The parameters of the design can be
changed before synthesis using a GUI, but the HDL is usually not visible. The majority of cores provided by
Altera and Xilinx come in this type of COrt. Third party lP provider will need substantial investment to make
their IP block available in this fonnat.

3. A HARD CORE is a physical description, provided in any of a variety of physical layout fonnalS like EDIF.
The cores are usually optimized ror a specific device (family), when hard realtime constrains are required, like

Proc. of SPIE Vol. 8058 80581F-2

for instance a PCI bus interface. The reused of the block is very limited and not often used in embedded system
design.

For a third party IP provider working on the customization of embedded systems it is not economical to provide hard or
parameterized cores, since this is done usually in small teams with hard time-to-market constrains. Obfuscalion is then
most often the only viable option to protect the provided soft core IP.

3. IPP METHODS USED FOR OBFUSCA nON

In todays embedded system design the main idea, algorithms or coding style is a valuable IP and gaining knowledge of
someone else work is called Reverse Engineering. Now Obfuscation is considered a method that transfonns the original
source into a different kind of representation that:

)- PreselVes the functionality of the program

)- Make the Reverse Engineering difficult

)- Make the code more complicated

)- Make it unattractive, from a business standpoint, to engage in Reverse Engineering.

Having enough time and money such code transfonnations usually can still be broken, i.e., Reverse Engineered. In fact it
has been shown by BaraI24 at al. that a complete secure obfuscation is not possible, but de-obfuscation will be very time
and resource consuming. Obfuscation does not intend to make it impossible to gain knowledge about the IP in question,
but it should be more time and cost consuming than to design a new IP block. Not all obfuscation transformations are
indeed useful. Changing a two dimensional row/column access to a column/row access for instance would chance the
original code and therefore can be claimed to be obfuscation, however from the standpoint of Reverse Engineering the lP
is not more difficult to understand. Let us briefly describe some popular metrics as defined by Collber~5 et al. that
classify different method.

3.1 Obfuscation melric, score, and measurements

A real world obfuscator usually will make a sequence of transfonnation not all at once. In general it would be preferable
if each of these transfonnations can be evaluated separately. Sometimes a combination of several transformations
together will be even more beneficial. The obfuscation tools can be evaluated by the following 4 metrics as suggested by
Collberg3s

•
J7 at al . However, keep in mind that most evaluations are based on the human cognition ability, and the

grading of the transfonnations is therefore not always a very precise science.

I. Obscurity or Potency: Is a measurement of how expensive it is to undo this transformation, or in other words,
how difficult it is for a human to understand the code after transformation. As score low, medium, and high was
suggested. As measurements it has been suggested that program length, number of predicates, data flow or
nesting complexity may be used.

2. Resilience: Measures how expensive it is to build an aulOmatic inverse transformation. In contrast to obscurity
which depends mainly on the human recognition, here the tool development (time) is key. The best
transformation can not be reversed and we call this one-way. An example of the one-way would be to remove
the comment in the code. Other suggested score include full. strong. weak, and trivial. The reordering of the
array mentioned above would be an example of a weak or trivial transformation.

3. Stealth: Measures how well the transfonnation blends into the general coding style. Many transformations add
dead code in form of opaque predicates to the code. Ifwe have a program with lot of arithmetic then a statement
li ke
IF IS_PRIME (2"512-1) THEN ...
would blend in just fine. But if the code has only Boolean logic and no arithmetic, e.g., a PCI bus interface, then
such a code sequence can easily be identified as an opaque predicate and removed from the code.

4. Cost: The question here is how costly is the transformation. Obviously, the transfonn takes some time and
resources. However, transform time and resources used are less a concern. More important is the question if the
transformed code still has the same performance, i.e., in HDL we would demand that size (A), speed (D. power,
the AT product, or Ar product should not change much. For software the main concern would be to preserve

Proc. of SPtE Vol. 8058 80581F-3

....-

the runtime. An increase in (source) code size, or compi le lime, on the other hand would be of less concern. As
score dear, cosily, cheap and free has been suggested by ColibergH al aL

This (our metrics arc, by nature of their definition, subject 10 human recognition capabilities and the skills of the
programmer who is doing the Reverse Engineering. In a controlled experiment at least for the identifier obfuscation
(discussed next) it could be shown that indeed reverse engineering is complicated through obfuscation18

.

Typically four major classes of transform methods have been defined by Collberis at a!. which are lexical, control, data
and preventive transfonnations. Let us discuss in the following some typical obfuscation methods that are nol trivial and
can be used in obfuscating VHDL, Verilog and C programs.

3.2 Lexical Transformation

The most popular and very useful obfuscation methods rely on the lexical transfonnation of the code. The simplest step
is removing all comments and the fo nnatting from the code. Adding confusing comments has also been suggested39• The
next step would be to substitute the identifiers with hard-ta-read identifiers that no longer reflect the functionality, such
as loop counter, enable or clock signals. Fortunately, HOLs and C have similar requirement for their standard identifi ers
as the Table I below ShOWS40-42. Escape type identifi ers are not considered since they are nOI often used in practice.

Table t . lnfonnation on identifier requirements (a- [a-zA·Z]; N=[0-9]).

VDHL Verilog C

First character a a a - -
Last character aN aN S aN - -
Other cbaracters aN aN S aN - - -
LRM required length '" ~ I 024 '"
Altera Quartus support ~ 2048 ~048

XiUDl: ISE support :S 128 :s: 128

GCC support ;,2048

The Language Reference Manuals (LRMs) for the three languages do not restrict the maximum length of the identifier.
Only Verilog LRM states that at least 1024 characters should be supported. Table 1 reports the support of identifiers by
Altera Quartus up to a length of2048. For Xilinx ISE length 128 worked without problems. The GCe compiler, popular
in many embedded processors, was confinned to work with length 2048 identifiers. A set of lexical obfuscation tools
including examples has been posted on the web· 7

•

A typical C code example for applying all three transformations is shown in Figure 2.

fo r (LOOP- 1 : LOOP<LMAX : LOOP++){
k2 .. N: dw - 1 ;
f o r (l .. 1 ; 1 <- S ; 1++) I j ' Loop Stages ' j

k1 • k2 ; k2 »- 1 :
w - 0 ; / . Angle count ' j

for(1l1l1111 - I , 11111111< 11111111 ; 11111111++) { 111 111 11 - 11111 111 ;
11111111 - " for (11111 111 - " 11111111 <~ 11111111 ; 11111111++) (
11111111 : 11111111 : 11111111 » - 1 ; 11111111 ,. 0 ;

Figure 2. lexical transformalion example: Ca) Original FIT C-code. (b) Obfuscaled code: remove comment,
substitute identifier, and n:-move fonnatting.

(a)

(b)

Comments and fonnatting is removed and identifiers arc replaced by length-8, hard-to-read type 'I ' (one) and ' I' (small
L) identifiers. Potency of the layout transfonnation can be considered to be in the range from low to high based on the
skills of the programmer. Cost is free , and transfonnation is stealthy, since no new language constructs are introduced.
Comment removal and scrambling identifiers is one-way, however we do not agree with the fonnalting assessment in by

Proc. of SPIE Vol. 8058 80581 F-4

Collberg35 et al.: The fonnat can be mostly recovered, assuming the original code was also formaned with a tool such as
inden t program available in UNIX for C programs.

3.3 Control Transformation

Thc lexical transformations discussed in the last section are the most popular methods used in available first generation
lools, since it is almost guaranteed to be free of cost and still can substantially hinder reverse engineering. The next
popular method is the control flow transformation.

The insertion of dead or irrelevant code will have a positive effect on the potency and resilience, and the cost is usually
cheap or free. Many suggesled lransfonnations rely on opaque predicat?'. The predicates can be always true (pT),
always false (1'\ or sometimes true (1'\ In the first two methods only the valid path has the desired code, the other path
is never taken, hence the name "dead code." In the last ease (p?) two code segments need to be developed that have the
same result, (e.g. x<- 2 *y; or x <- y+y) since both paths may be taken. This is in general harder to do since a code
transfonnalion has to be found that is substantially different, but still has the same output result.

The opaque predicates can be added to IF conditions, LOOP conditions, or by adding redundant operations. Fig. 3 shows
a pT example using Altera Quartus VHDL tools. The PL-times right rotation (ROR) operation of an length-L vector will
indeed always results in the same vector, and hence the opaque predicate will always be true. The potency of the method
shown in Fig. 3 is medium to high given the fact that both code length and number of conditions in the code increases.

Thi!: I s the ALTEP.A QU<l r tus

PAT d~ad . vhd e~a~pl e

ENTITY dead IS

PORT(a,b : IN INTEGER RANGE 0 TO 2--8-1;

s: OUT INTEGER RANGE 0 TO 2**8-1);

END ;

ARCHITECTURE test OF dead IS

BEGIN

Fr e-e after synt.hesis ;

R~L viewe r shows multiplie r

S <- 3 + b ; OIi 9ina1 code

S <- a + b WHEN "01 10" ROR a'4 - " O ll O ~
ELSE a • b;

END test;

(a)

-

-
(h)

To<.ik9c_.
Enbedded M.- 9-b<_.

(e)

+-<=>< .

8/33216«1%)
O/70(ot)

Figure 3. Dead code pT example: (a) VHDL code. The condi tion ora rotation t·L ora length L vector will always
reproduce the original, i.e. , always true. (b) Initial RTL view. (c) Compiler Report.

From the initial RTL viewer diagram in Fig 3(b) we see that Ihis predicate is well resilient to the automatic de~

obfuscation with the RTL viewer. The cost of this transfonnation is zero, since after compilation the synthesis result
shows the use of just one 8-bit adder, the array multiplier is removed from the netlist. Since the added code and predicate
use the same coding style as the original code we can also argue that the transfonnation is stealthy.

The next control flow example is a change in control aggregation by using outlining of statements. Standard arithmetic
or Boolean operations are replaced by equivalent function calls. Since the function names are also obfuscated, the code
becomes harder to read. Here function names are obfuscated via hard to read '0' (zero) and '0' (capital 0) type
identifiers, and placed in a library. Fig. 4 shows an example using Xilinx ISE tools of outlining four operations. Other

Proc. of SPIE Vol. 8058 80581 F-S

»

than the claim in the Iiterature44 our results show that the cost (if outlining is done properly) is frce. Potency is medium,
resilience is weak, but together with function name obfuscation can be made strong. Transfonnation is stealthy.

-- Thp ,; ili r,x 18E 1...: .3 <'ligj J1(,} " o'k
ENTITY olsv-pack_ tb IS
PORT (a, b : IN

END;

sro LOGIC VECTOR(3 DOWNTO 0);
rl, r2, r3: r4: OuT

STD_LOGIC_VECTOR(3 DOWNTO 0»;

ARCHITECTURE test OF olsv_pack_tb IS
BEGIN

Origir.al CQd <'!

.1 <- a • b; . , <- a -- b;

" <= a AND bi ., <- a DR b;
END test;

(a)

...,
::~:--'-D-'---------------- - ------,~

"T1" 0f2

Lt~-----------

1~=[:J-:' --------
i o-
j i
i! .. -*1..01

ilB----
U __ dl

(0)

-- Th i~ th0 X i]in ~ lS E J 2 ,3 e~~M~l~
ENTITY olsv pack_tb IS
PORT (a, b : IN

STD LOGIC_VECTOR(3 DOWNTO 0);
rl, r2, r3, r4: OUT

STD_LOGIC_VECTOR(3 DOWNTO 0) ;
END;
ARCHITECTURE test OF o lsv_pack_tb IS
SIGNAL 1111, 1111, 1111, 1111, l1ll,

: STD_LOGIC_VECTOR (3 DOWNTO
11p

0) ;
BEGIN
-- uut l ine ,;odc: a nd ID ~bfuscati0 n

1111 <- a_in; 1111 <- b_ in;
r1 <= 1111; r2 <= 1111;
r3 <- 1111 ; [4 <- 1111;
1111 <- 0000(1111->1111,1111~>1111);

1111 <- 0000(1111->1 111,1111->1111);
1111 <- 0000 (1111- >1 111,1111->1111) ;
1111 <- 0000(1111->1111,1111->1111);

END test;

(b)

Devtce utlization Summary

Logic l.dI:liltlon u..d Availabfe

turOer d ~ i'1JUI: LUTs " 3,8'40

runber d occupied Slices 6 1,920

.tbrber of Skes cortanog only r~ed Iooic 6 6

~ of Skes corteiTM;llSl'eIated Iooic 0 6

Tote! fbnber of ~ ifl:lli LUTs " 3,8~O

Nunber of bonded ~ 16 173

Alleftq: FarlOlt of Non-CIock Nets ',00

(d)

Figure 4. Outline Xilinx ISE code: (a) VHDL code. (b) Code using outline of operations into a function. (c) RTL
view picture of the 4 operations. (d) Compiler Rcport shows same used Resource (12 LUTs) for both versions.

3.4 Data Transformations

The data transformation methods usually require a high coding effort than control and dead code insertion. Only a few
JAVA tools are capable of this type of transformation. Differenl methods have been suggested in the literature for data
transformation. Many rely on array transfonnations, but have weak resilience. The change of encoding is a method that

Proc. of SPIE Vol. 8058 80581F-6

9

b

is stronger and can be used in HDL and C coding. It is discussed in the example from Fig. 5. A Boolean type is split up
into several integer representations. In the example the integ~r 0 to 3 are used to represent the Boolean type.

Integer=
Binarv 2b +b.

0 0
1 1

Right

1 2
0 3

('J

ENTITY splitting IS
PORT (a, b : IN BIT;

c_org, s_org,
$, c : OUT BIT);

END;

0

1

2

3

Lit e

0 1

3 3

0 2

0 I

0 3

lAND

(bJ

ARCHI TECTURE test OF splitting IS

Lit e

2 3 0 1 2 3

0 3 0 3 I 2 0

I 0 Right 1 I 3 0 2

2 0 2 2 0 3 I

3 3
3 0 I 2 3

IEXOR

(oj

SIGNAL aI, a2, bl, b2, ci, si, cl, e2, 51, 52
BEGIN

INTEGER;

s_org <= a XOR bi -- Original code
c_org <= a AND h;

Code using splitting
a1 <= 1 ; a2 <= 0 when a= ' l ' else I i
b! <= 0; b2 <= 1 when b= ' l ' else 0;
si <= IEXOR(a l*2+a2,2*bl+b2);
s1 <= si/2; s2 <= si-2*(si/2);
s <= VAL(sl,s2);
ci <= IAND(al*2+a2,2*bl+b2);
cl <= ci/2; c2 <= ci-2*(ci/2);
c <= '0' when cl=c2 else '1';

END test ;
(dJ

(1ap Boolean a to i nteger
Map Boolean b to integer
Apply integer EXOR
Compute bi t s
Map int~ger to Boolean s
lipply i nteger AND
compute b i ts
Map integer to Boolean c

Figure 5. Splitting a Boolean into 4 inlegers. (a) Transfonnation. (b) Coding of the integer AND operation. (c)
Coding of the integer EXOR operation. (d) YHDL code for a half-adder circuit showing first the original code and
then the transfonned code.

Then Boolean operations are then defined via the integer representation or table operation, as shown in Fig.5(b) for the
AND and in Fig. 5(c) for the EXOR operations. The integer EXOR function (placed in an extemallibrary) for two bits can
be, for instance, implemented in VHDL as follows:

FUNCTION IEXOR(l,r: INTEGER) return INTEGER IS
, VARIABLE resul t : INTEGER;

BEGIN
result := 0;
If (1" 0 AND r - 1) OR (1 ... 1 AND (r-O OR r ",,3):, OR (1-3 AND r-2) THEN result:"l; END If;
IF (1-0 AND r ""2) OR {1 - 2 AND (r~ O OR r ""3)) OR (1=3 AND r - l) THEN result:-2; END IF;
IF (1 .. r) THEN result : = 3; END If;
RETURN result;

END,

Proc. of SPIE Vol. 8058 80581F-7

•

For the inverse operation the table in Fig. 5(a) is used, this lime trom right-to-Ieft.

The RTL viewer shows in Fig. 6(a) the substantial amount of gates used to implement the half-adder circuit that in the
original code consist of just onc EXOR and onc AND gate. The simulation results in Fig. 6(b) do match for original and
splitting designs. Potency of me transform is high, and resilience strong 10 one-way since the mappings in use arc one·to
many and many-la-one and the RTL viewer can hardly optimize this circuit. The transform is stealthy and has low cost.
The method can be further improved if a mapping with 8 or 16 integers are used and the integer Boolean operations are
(randomly) defined at runtime. However, the cost may no longer be free.

""1 .. 1.-..11'01011

-~ --.-..-

-
•
•
,~

'-~

••
,
••

:.~

.)

Figure 6. Splj{ling a Boolean into 4 integers Synthesis and Simulation results. (a) RTL viewer output. (b)
Simulation comparing the original and the transfonncd code.

The following example will demonstrate a data transfonnation method. It was found to be free of cost in JA VAll, but not
so in HDL. The method is based on merging several arithmetic operations. In the example the original code has the
following 4 arithmetic instructions: u=a+5; v-b+ 11; x-c*u; y=d*v; all in S-bit arithmetic. Now we merge the
8-bit instructions into 16-bit instructions. Fig. 7 shows the resulting Veri log code. Within the always statement the
HDL analysis is sequential just as in a regular C program

Proc. of $PIE Vol. 8058 80581F-8

Fig. 7(c) shows that the results are correct. However, from the comparison of the resources we see that the merging
method requires additional multipliers and LEs adder resources. To compute the expressions (c-l) and (d-l) S8 LEs
arc required for the merge compared to 17 LEs in the original. The products now require two 16xl6-bit multipliers
compared to the two 8x8-bit one of the original code. A software implementation will be dominated by the multiplier
time; the additional adder time would not matter much.

module vmerge
(input unsigned [7:0) a, b, c, d,
output unsi gned [7:0) u , v,
output unsi gned [7:0J x, y);

I I Original 17 LE$ atld
'1 t;./o Qy9 bits multipli""lS
I· set a~15, b=35 , c-4 , d-2 ;
.' I in Vl-iF simulato!
assign u • a + 5; II u- 20
assign v - b + 11; 1/ v- 46
assign x • c * u; II x- 80
assign y - d * v; // y-92

endmodul e

(,)

N_ V ~
17.45",

Bib U35
BI, U'
Bid U2
Ilh U2<l
BI , U"
BI • uro
BI, U92

(c)

modul e vmerge
(input unsigned [7:0J a, b, c, d,
output reg unsigned [7:0J u, v ,
output reg unsigned [7:0J x, y) ;

reg unsigned [15: 0J z;
parameter k - 2821; II i.~. , k .. (11 ·25(,) ... 5;

1/ Needs 58 LEs and four 9:-<9 l'its r.lulti,.lioers
always @(· l
begin

/1 tas k: u-;.+5 ; v"'b+ll; X-C"tl ; y~d'v ;

Z - a + b • 256; 1/ One dou).,le length word
z - z + k; /1 Add ju~t one constant
u" z (z /256) * 256; /1 LSBs
v - z I 256; I I MS5s
z '" z + (e-l) ~ u ; 1/ Me r ge 1. multiply
z - z + ((d-l) * 256) • v; II Men;e 2 . multi .
x '" z - (z/256) .. 256; /1 !-1SBs
y - z » 8.

e,d
endnodule

(b)

Top-level Entity Name

Family : Cyclone II

Total logic elements

Total registers : 0

Total pins : 64

Total virtual pins : 0

To tal memory bits : 0

/ / 1,SBs

vmerge

58 I 17

Embedded Multiplier 9-bit elements

Tote! PLLs : 0

(d)

4/2

Figure 7. Merge obfuscation Verilog Example. Task at hand are the following 4 arithmetic operation:
u - a+5;v-b+11;x-c*u;y-d*v; Data are merged to single long register variable z. (a) Original Venlog
code. (b) Merged code. Note that within the always block the computation is sequential. (c) Simulation result for
both should match. (d) Synthesis results with/without merge.

3.5 Preventive Transformations

Preventive transformations are used with the goal to crash a particular de-obfuscation program. The newest third
generation Java obfuscator like JBCO from the Sable~5-46 group focuses on these preventive transforms. As an example
consider adding predicates with side effect. Here two predicates work together. Removing one and not both predicates

Proc. of SPIE Vol. 8058 80581F·9

pi

only would result in a malfunction. Other method includes using difficult theorems like IF IS_PRIME (2 " 512 -
1) THEN ... Also, complicated pointer/array transfonnations used in predicates have been shown to be difficult for the de
obfuscators 10 solve. However, pointer structures are not supported in HOLs and other difficult predicates need to be
found.

Since currently no de-obfuscator for HOL or C exists at time of writing, designing HOL preventive transfonns for de
obfuscators will be a concern for the future .

4. ACKNOWLEDGEMENT

The authors would like to thanks Altera and Xilinx for the provided hardware and software under the University
programs. Any opinions, findings . and conclusions or recommendations expressed in this paper are those of th~
authors and do not necessarily reflect the views of the sponsors. The help of the following consultants and program
manager is acknowledged: B. Esposito, S. Brown, R. Maroccia, M.Phipps (Altern) and J. Weintraub, A. Acevedo,
C. Sepulveda, C. Dick (Xilinx). U. Meyer-Baese gratefully acknowledges support for this work from the Humboldt
research foundation. Products and company names used in this article may be trademarks of their respective owners.

s. CONCLUSION AND FUTURE STUDY

This paper discusses obfuscation methods for C, VHDL and Verilog languages. Commercial first generation tools that
perform lexical transformations and include watermarking capability are available for VHDL from VISENGI. Semantic
Designs (http://www.scmdesigns.com/productslobfuscators/) offers first generation tools for VHDL, Verilog, and C
languages and others. A second generation obfuscator KRYPTON was available from the French4J company LEDA, but
has been discontinued. The only available open source HDL obfuscator so far has been the Verilog obfuscator from
EDA utilities, see http://www.eda-utilities.con¥vo.htm. Many obfuscation tools are available for JAVA, see
http;;/wwv.'.dmoz.on!.

Three first generation open source lexical obfuscators for C, VHDL and Verilog languages have been developed and
posted online47

• In this paper advanced control and data obfuscation methods, as used in second generation obfuscators,
have been discussed in term of potency, resilience, stealth and cost. It turned out that HDL transforms and JAVA
obfuscation do not always have equal quality measurement results.

Future study will include the development of strong opaque predicates that RTL viewer in HDL and C compiler cannot
brcak but are still cost free. Also, HOLs offer additional language features that allow developing obfuscation methods
not available with nonnal C or Java code. One example is the use of concurrent code. Here in HDLs the statements are
evaluated concurrently, i.e., the ordcring of the statements does not matter. Combined with a wire permutation, code
with high potency and cost free can be developed.

REFERENCES

Il] Keating, M. and Bricaud, P., [Reuse Melbodology Manual for System-on-a·Chip Designs], Kluwer Academic
Publishers, (1998).

[2] Amos, D. Lesea, A. and Richter, R., [FPGA-Based Prototyping Methodology Manual} free ebook
http://www.synopsys.com/SystcmsIF PGA BascdPrototyping/fPMMlPagcsldcfault.aspx(last accessed 3·22·201 I}

[3] VSI Alliance, "The Value and Management ofInteliectual Assets," White Paper, Vl.O. (June, 2002).
[4] VSI Alliance, " Intellectual Property Protection: Schemes, Alternatives, and Discussion," White Paper, VI I.

August, (2002).
[5] Naumovich, G. and Memon, N. "Preventing Piracy, Reverse Engineering and Tampering," IEEE Computer, 64-71

(2003).
[6] Goldstein, H., "The secret an of chip graffiti" IEEE Spectrum, 39(3), 50·55 (2002).
[7J Cox, I., Miller, M. and Bloom, J., [Digital Watermarking: Principles & Practice], Morgan Kaufmann, (2001).
[8] Kahng, A.B., Lach, J. , Mangione·Smith, W. H., Manlik, S. , Markov, I. L., Potkonjak., M., Tucker, P., Wang H. and

Wolfe. G. , "Watermarking Teclmiques for Intellcctual Property Protection," Proc. of the Design Aulomation
Conference, 776-8 1 (1 998).

Proc. ofSPIE Vol. 8058 80581 F-10

4

j

[9] Lach, J., Mangione-Smith, W.H., Potkonjak, M., "Fingerprinting Techniques for Field Programmable Gate Array
Intellectual Property Protection," IEEE Transactions on Computer-Aided Design, 20(10),1253-61 (2001).

[10] Charbon, E. and Torunoglu, L, "Watermarking techniques for electronic circuit design," in Lecture Notes on
Computer Science, VoL 2613,147-169, (2003).

[I 1] Castillo, E. , Meyer-Baese, U., Parrilla, L , Garda A. and L1oris, A. , "Watennarking Strategies for RNS-based
System Intellectual Property Protection," Proc. of 2005 IEEE Workshop on Signal Processing Systems SiPS'05,
Athens, 160-165 (2005).

[12] Castillo, E., Parrilla, L., Garcia A., L10ris A. and Meyer-Baese, U., "IPP Watermarking Technique for IP Core
Protection on FPL Devices," Proc. of 16th International Conference on Field Programmable Logic and Applications
FPL'2oo6, 487-492 (2006).

[I3]CastiIJo, E., Parrilla, L., Garda A., Liori s A. and Meyer-Baese, U., " Intellectual property protection of IP cores
through high-level watermarking," Proc. SPIE Int. Soc. Opt. Eng., Vol. 6576 (2007).

[14]Castillo, E. , Meyer-Baese, U., Parrilla, L , Garda A and Lloris, A., " IPP@HDL: Efficient Intellectual Property
Protection Scheme for IP Cores," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(5), 578-
591 (2007).

[15]Castillo, E., Meyer-Baese, U., Parrilla, L , Garda, A. and Lloris, A.,"New advances for automated IP soft-core
watermarking," Proc . SPrE Int. Soc. Opt. Eng., 7343-0L-I-12 (2009).

[16]ParriJla, L., Castillo, E., Meyer-Baese, U., Botella, G., Garcia, A , Gonzalez., D., Todorovich, E., Boemo, E. and
Lioris, A., "Watermarking strategies for IP protection of micro-processor cores," Proc. SPIE Int. Soc. Opt. Eng.,
77030LJ - 10 (2010).

(I 7] Schneier, B., [Applied Cryptography], John Wiley & Sons, New York (1996).
[I 8] Menezes, A , van Oorschot, P., and Vanstone S., [Handbook of Appl ied Cryptography], CRC Press, Boca Raton, FL

(1996).
[19JWelschenbach, M. [Cryptography in C and C++J, Apress, Berkley, CA (2001).
[20] Lie, D., Thekkath, C., Mitchell, M., Licoln, P., Boneh, D., Mitchell, 1. and Horowitz, M., "Architecrure Support for

Copy and Tamper Resistant Software, ACM ASPLOS-IX, 168-177 (2000).
[21]Yang, J., Zhang, Y. and Gao, L., "Fast Secure Processor for Inhibiting Software Piracy and Tampering,"

Proceedings of fie 36111 International Symposium on Microarchitecture, 1-10 (2003).
[22]Yang, J., Gao, 1. and Zhang, Y., "Improving Memo!), Encryption Perrormance in Secure Processors," IEEE

Transactions on Computers, 54(5), 630-640 (2005).
[23] Mahar, A., Athanas, P., Craven, S., Edminson, 1., and Graf, J. , "Design and Characterization of a Hardware

Encryption Management Unit for Secure Computing Platfonns," Proceedings 39'" Conference on System Sciences.
Hawaii, Vol. 10, 251b (2006).

[24] Meyer-Baese, U., Sunkara, D., Castillo, E. and Garcia, A., "Custom Instruction Sel Nios-based OFDM Processor for
FPGAs," Proc. SPIE Int. Soc. Opt. Eng., 6248U·I-1O (2006).

[25] Zurawski, R., ed., "A Novel Methodology for the Design of Application-Specific Instruction-Set Processors," in
Embedded System Handbook, CRC Press. Boca Raton, FL (2006).

[26] Vera, A., Meyer-Baese U. and Pattichis, M., "An FPGA based rapid prototyping platform for wavelet
coprocessors," Proc. SPIE Int. Soc. Opt. Eng., 657615-1-10 (2007).

[27] Meyer-Baese, U., A. Vera, A., Rao, S., Lenk, K., Pattichis, M., "FPGA Wavelet Processor Design using Language
for Instruction-set Architectures (LISA)," Prac. SPIE Int. Soc. Opt. Eng., 65760U· l·12 (2007).

[28]Meyer-Baese, U., Botella, G., Castillo, E. and Garcia. A.,"Nios Jl hardware acceleration of the epsilon quadratic
sieve algorithm," Proc. SPIE Int. Soc. Opt. Eng., 77030M- l·10 (2010).

[29]Meyer-Baese, U., Vera, A. , Meyer-Baese, A., Pattichis, M. and Peny, R., "Discrete Wavelet Transform FPGA
Design using MatLablSimulink," Proc. SPrE tnt. Soc. Opt. Eng., 624703-1-10 (2006).

[30JMeyer-Baese V., Natarajan, H. , Castillo, E. and Garcia. A., "Faster than the FFT: The chirp-z RAG-n Discrete Fast
. FourierTransform," Frequenz, Vol. 60, 147-151 (2006).

[31JMeyer· BlI.sc, U., Natarajan, H. and Dempster, A., "Fast Discrete Fourier Transform Computations Using the
Reduced Adder Graph Technique," EURASIP Journal on Advances in Signal Processing, Vol . 2007, Article to
67360, 8 pages (2007).

[32] Meyer·Baese, U., Vera, A., Meyer-Baese, A., M. Pattichis, M" R. Perry, R., "Smart Altera Firmware for OSP with
FPGAs," Proc. SPJE Jnt. Soc. Opt. Eng., 65760T-J-I 1 (2007).

(33]Meyer-Baesc, U., {Digital Signal Processing with Field Programmable Gate Arrays], 3M ed., Springer-Verlag,
Berlin (2007).

Proc. of SPIE Vol. 8058 80581F-11

[34] Barak, B., O. Goldreich, O.,1mpagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K., "On the (Im)possibility of
Obfuscating Programs," Advance in Cryptology - Crypto 2001, Proc. lNCS 2139, Springer-Verlag, 1- 18 (200 1).

[3S]Collberg, c., Thomborson, C. and low, D., "A Taxonomy of Obfuscating Transformations," Technical Report
#148, Dept. CS, Uni. Of Auckland, New Zealand (1997).

{36]Collberg, C., Thomborson, C. and D. l ow D., "Manufacturing Cheap, Resilient, and Stealthy Opaque Constructs,"
Proceedings Principles Of Programming Languages, POPl'98, 184-196 (1998).

[371Collberg C. and Thomborson, C., "Watermarking, Tamper-Proofing and Obfuscation - Tools for Software
Protection," IEEE Transactions on Software Engineering, 28(8), 735-746 (2002).

[38]Ceccato, M. Penta, M., Nagra, J., Fa\carin, P., Ricca, F., Torchiano M. and Tonella, P., "The Effectiveness of
Source Code Obfuscation: an Experimental Assessment," IEEE 17th International Conference on Program
Comprehension, 178 - 187 (2009).

[39] Lifshits, Y., "Lecture Notes: Program Obfuscation and Cryptography," Invited Course at Tartu University in Spring
2006.

[40]ISO/ANSI Programming languages -C, http://www.open-std.orgljlcl /sc22/wgI4/, Sec. 6.4.2 Identifiers, p.44 (last
accessed 3-22-2011)

[411VHDl 1076-2008 language Reference Manual, IEEE Explore, Section 15: lexical elements
[42] Verilog® hardware description language, IEEE Standard 1364-2005, Ch3: Lexical conventions, p. 14
[43] K. O'Brien K. and S. Maginot, S., "Non-Reversible VHDl Source-Source Encryption" Proceedings of the

conference on European design automation, Grenoble, France, 480-485 (1994).
[44] Brzozowski M. and Yarmolik, V., "Obfuscation as Intellectual Rights Protection in VHDL language" Proceeding

Int. Conf. on Computer Information Systems and Industrial Management Applications, p. 1-4 (2007).
[45]Naeem, N., Batchelder, M. and Hendren, L., "Metrics for Measuring the Effectiveness of Decompilers and

Obfuscators," Sable Technical Report no. 2006-4, School ofCS, McGill University (2006).
[46JBatcheldcr, M. and Hendren, L, "Obfuscating Java: the most pain for the least gain," Sable Technical Report no.

2006-5, School ofCS, McGill University (2006).
[47] Meyer-Baese, U., "128 Length Obfuscator Tool Set" (online) http://www.cng.fsu.cdu/- umb/04.htm (last accessed 3-

22-2011)

Proc. of SPIE Vol. 8058 80581F-12

