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Abstract:
Annual maxima (AM) and partial duration (PD) ¯ood series are modelled by parametric and non-parametric
methods. In PD analysis the number of threshold exceedances is assumed to be Poisson distributed; the peak

exceedances are described by the generalized Pareto (GP) and non-parametric (NP) distributions. The
generalized extreme value (GEV) and non-parametric (NP) distributions are used to describe the AM series.
L-moments are employed for parameter estimation for GEV and GP distributions. Analysis of data from the
provinces of Quebec and Ontario, Canada, shows that both AM and PD series can be inferred as being

unimodal and bimodal, both of which can be described by the NP method. Also, this method is found not to be
sensitive to the choice of threshold level; however, it was also observed that parametric methods cannot detect
biomodality, give di�erent quantile estimates for AM and PD data and PD estimates are sensitive to the

selection of threshold level. Therefore, the NP method is more advantageous than the parametric methods in
¯ood frequency analysis for both AM and PD series. # 1998 John Wiley & Sons, Ltd.
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INTRODUCTION

In ¯ood frequency analysis it is important to extract the maximum information possible from the sample.
Two basic types of extremes can be extracted from stream ¯ow records, namely the annual maximum (AM)
series and peak over threshold (POT), or partial duration (PD) series. The AM series is more commonly
used; however, the PDmethod can be particularly useful when the period of record is short. The AM and PD
approaches di�er in their distribution selection and estimation of parameters and quantiles. The choice
between the two series has been investigated by many researchers. Cunnane (1973), using the standard error
of the quantile estimate, found that the PD series has a larger sampling variance than the AM series for a
return period greater than 10 years, when the number of exceedances per year is equal to one. More recent
comparison performed by Madsen et al. (1997) shows that the PD model is generally the preferred method
for ¯ood analysis since it is more suitable for heavy-tailed distributions, which are common in hydrological
applications. However, PD models cannot be used e�ectively when data are bimodal as a result of more
than one ¯ood-causing event (i.e. snowmelt, rainfall) occurring in a season or within a year. Floods can have
a bimodal distribution (Waylen and Woo, 1987) which requires a mixture of two-component para-
metric distributions. Another source of possible errors in modelling AM and PD series are the methods used
in parameter estimation. However, the recently developed L-moments method (Hosking, 1990) gives almost
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unbiased estimates of parameters. The purpose of this paper is to develop a new non-parametric method to
describe the PD ¯ood series, and to compare its performances against PD and AM models.

MODELLING PD AND AM SERIES

The main issues in the modelling of PD series are: the choice of the threshold, the selection of the model
of the arrival rate of events larger than the threshold level and the distribution selection and parameter
estimation for modelling the magnitude of ¯oods. The threshold selection is crucial, but by no means
straightforward. Based on a simulation study, Yevjevich and Taesombut (1979) found that the value of
l should be greater than 1.8. Rosbjerg (1985) concluded that when the data are independent (uncorrelated)
then both AM and PD series give the same SE regardless of l value. Considering a typical sample size
(20±40 years) available for the analysis, Ashkar et al. (1987) found that l could be less than 1.65. This last
conclusion was further supported by Rasmussen et al. (1993). Birikundavyi and Rousselle (1997) analysed
PD ¯ood data from Quebec and Ontario and found the most appropriate threshold level to be equal to 1.7.
However, Madsen et al. (1997), using a Monte Carlo simulation study comparing PD and AM series,
concluded that the threshold could be between 0.4 and 15. Clearly, the issue of threshold selection requires
more research.

Given that N exceedances of the threshold have been observed during M years, the occurrence of
exceedances is assumed to be described by the Poisson process, with a periodicity of one year. The mean
number of exceedances per year is estimated from

l̂ � N=M �1�
Hence, if nq denotes the number of exceedances of ¯ow q in a year, then

Pfnq � k� � lk e
ÿl=k ! k � 0; 1; 2; . . . �2�

The exceedances are assumed to be generalized Pareto (GP) distributed (Pickands, 1975).
A theoretical expression for T-year events can be derived by noting that the number of exceedances above

the threshold level r in a particular year, denoted by nr , is a Poisson-distributed random variable with a mean
value given by (Rasmussen, 1994).

Efnrg � l�1 ÿ F�r�� �3�
Therefore, the distribution of the annual maxima ¯ood, X is given by

Fa�x� � P�nx � 0� � exp�ÿE�nx�� � expfÿl�1 ÿ F�x��g �4�
The cumulative distribution function (CDF) of the GP distribution is given by

F�x� � 1 ÿ 1 ÿ k
x ÿ x0

a

h i1=k
k 6� 0

� 1 ÿ exp ÿ x ÿ x0
a

h i
k � 0

�5�

where a is the scale, x0 is the location and k is the shape parameter.
Insertion of the CFD of the GP distribution [Equation (5)] into Equation (4) gives a GEV distribution for

AM series greater than x0 and k 6� 0,

Fa�x� � exp ÿl 1 ÿ k
x ÿ x0

a

� �1=k� �
� exp ÿ 1 ÿ k

x ÿ z
b

� �1=k
" #

x5 x0 �6�
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Equation (6) reduces to a Gumbel (or EV1) distribution when k� 0, while for x5 x0 , the transformed
parameters z and b are given by

b � alÿk

z � x0 �
a�1 ÿ lÿk�

k
when k 6� 0

�7�

and

z � x0 � a 1n�l� when k � 0

The above is a general Poisson±Pareto parametric model that is currently used in hydrological applications
with k values estimated regionally and interchangeably for PD and AM series.

The CDF of GP and GEV are similar, the main di�erence being that the GP is bounded below at x0 and
the GEV at e7l.

Wang (1991) compared the GEV/AMmodel with the GP/PD model in ¯ood analysis, and concluded that
the two models perform equally well when the average number of exceedances in a year is about one (l� 1).
This is di�erent from the value for l suggested by Cunnane (1973) (l4 1.65) and Yevjevich and Taesombut
(1979) (l4 1.8). Madsen et al. (1997) compared GP/PD and GEV/AM models for maximum likelihood
(ML), method of moments (MOM) and probability weighted moments (PWM) and concluded that in most
cases the PD/ML provides the most e�cient estimator. Once the distribution is selected, then its parameters
are estimated. The L-moments method gives almost unbiased estimates of parameters (Hosking, 1990).
Therefore, it is adopted and used in this paper for parametric methods. However, all previous studies were
based on the assumption that the distributions are known. In practical applications the actual distributions
for AM and PD series are not known. Many other distributions have also gained wide recognition (e.g. log-
Pearson type III), but the distribution choice is often inconclusive and even controversial.

Recognizing the problems faced when using parametric methods, an alternative non-parametric method
has been introduced (Adamowsi, 1985, 1989). Its use for modelling PD series is investigated, and is compared
with L-moments parametric methods in this paper.

L-moments

L-moments are linear combinations of ranked observations that do not require squaring or cubing of
the observations, as do product-moment estimations. As a result they are almost unbiased estimators, and
as such are very attractive in practical applications. The L-moments of X can be de®ned as functions of
probability weighted moments (PWM). For order statistics of ranked observations X( j) an estimator of PWM
for i5 1, is (Hosking, 1986).

bi � n
ÿ1Xn

j�1
x� j�
� j ÿ 1�� j ÿ 2� . . . � j ÿ i�
�n ÿ 1��n ÿ 2� . . . �n ÿ i� �8�

For any distribution, the ®rst four L-moments can be calculated from

l1 � b0

l2 � 2b1 ÿ b0

l3 � 6b2 ÿ 6b1 � b0

l4 � 20b3 ÿ 30b2 � 12b1 ÿ b0

�9�
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The L-moments can be converted to dimensionless L-moment coe�cient of variation (t2), skewness (t3) and
kurtosis (t4), as follows

t2 � l2=l1; t3 � l3=l2; t4 � l4=l2 �10�
The parameters of the GEV distribution in terms of L-moments are given by (Hosking, 1991)

k � 7�817740z � 2�930462z2 � 13�641492z3 � 17�206675z4

b � l2k=��1 ÿ 2
ÿk�G�1 � k��

z � l1 � a�G�1 � k� ÿ 1�=k
�11�

where

z � 2=�t3 � 3� ÿ 1n�2�=1n�3�
The quantile of the GEV distribution is obtained from

xp � z � bf1 ÿ �ÿln� p��kg=k; for k 6� 0;
z ÿ b 1n�1 ÿ 1n� p��; k � 0

�
�12�

where p is the assumed cumulative probability.
The parameters of the GP distribution in terms of L-moments are given by (Hosking, 1991)

k � �1 ÿ 3t3�
�1 � t3�

; a � �1 � k��2 � k�l2; m � l1 ÿ �2 � k�l2 �13�

where m is the location (threshold level x0), k is the shape and a is the scale parameter. When m is known,
parameters k and a can be estimated by

k � �l1 ÿ m�=l2 ÿ 2; a � �1 � k��l1 ÿ m� �14�
Simulation by Hosking and Wallis (1987) shows that L-moment estimation is most useful when k47 0.2,
because L-moment parameter and quantile estimators are then less biased than moment or maximum
likelihood estimators. For k4ÿ0.1, conventional moment estimators are asymptotically more e�cient than
L-moment estimators.

The quantiles estimation by the GP can be computed from

xp � m � af1 ÿ �1 ÿ p�kg=k; for k 6� 0;
m ÿ a ln�1 ÿ p�; k � 0

�
�15�

NON-PARAMETRIC ESTIMATION OF DISTRIBUTION

Current methods of ¯ood frequency analysis are based on the assumption that the sample of ¯ow observa-
tions come from a population with known probability density function (PDF). An a priori choice of a PDF
(e.g. GEV) is made, and its parameters are estimated using one of several methods (e.g. moments,
L-moments, maximum likelihood). Such methods are said to be `parametric'. However, in the hydrological
context, the PDF is never known, and must be assumed. Despite intensive research and legislation, no
particular method has emerged as the best and most uniform across di�erent sites.

In recent years several researchers, for example Adamowski (1989), Lall et al. (1993) and others, have
strongly advocated the use of non-parametric density estimators. There are many theoretical and practical
reasons in favour of the non-parametric method (Lall et al., 1993).
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The process of non-parametric density estimation is similar to that of building a histogram when a
rectangular block of height 1/nh is added at the centre of the class interval to which a given data point
belongs. The ®nal histogram frequency distribution is the sum total of all blocks, each one of area 1/n. In
non-parametric frequency, a kernel function of area 1/n centred at the data point location itself is added.
This kernel may be of a variety of shapes. The ®nal non-parametric density is the sum of all kernels.

The non-parametric kernel density estimate fn(x) from a sample {x1 , x2 ,. . . , xn} of size n is given by
(Adamowski, 1985)

f n�x� �
1

nh

Xn
j�1

K
x ÿ xj

h

� �
�16�

where K() is a kernel function, itself a probability density function, and h is a bandwidth or smoothing
factor, which is to be estimated from the data. In hydrological applications, the two most commonly used
estimators are constant kernel estimator (CKE), whose bandwidth is constant throughout the data points,
and variable kernel estimator (VKE), whose bandwidth depends on the interpoint distance between xj and its
kth nearest neighbour amongst all the data points. It has been shown (Adamowski, 1989) that there is no
apparent advantage of the VKE over the CKE. Therefore, in this study, CKE is used.

The choice of the kernel has a relatively minor e�ect on the resulting density function. In this study, the
optimal Epanechnikov kernel (Adamowski and Feluch, 1990) is used and is given by

K�t� �
3
4 �1 ÿ t2� for ÿ 14 t4 1

0 elsewhere

(
�17�

The calculation of h is crucial to the performance of the estimator. Several means of using the data to yield an
objective choice of h have been proposed. The optimal values of h in terms of integrated mean square error
(IMSE) is obtained from the least-square cross-validation (LSCV) method. Using an IMSE criterion,
Labatiuk and Adamowski (1987) found that the various numerical algorithms for computing h perform
similarly and are all close to the optimal value predicted by theory, which is expressed by

h �
Xn
i�2

Xiÿ1
j�1

�xi ÿ xj�
51=2n�n ÿ 10=3� �18�

Using an optimal kernel [Equation (17)] and an expression for the optimal value of h [Equation (18)], it is
possible to estimate the density function by Equation (16).

In hydrological applications, it often happens that some elements in the sample are far apart (i.e. outliers),
which might result in a discontinuity of the density function giving an increased bias at such boundaries. In
order to remedy this problem an unbiased boundary kernel is used in this paper. Let q� (x7 xmin)/h, then
for the left boundary (i.e. 04 q4 1), the boundary kernel is given by (Muller, 1991)

K�q; z� � 6�1 � z��q ÿ z� 1

�1 � q�3 1 � 5
1 ÿ q

1 � q

� �2

�10 1 ÿ q

�1 � q�2 z
" #

�19�

where z� (x7 xi)/h. Similarly, for the right boundary, assume q (xmax7 x)/h.

NUMERICAL ANALYSIS

The data

Numerical analysis was performed using data from eight gauging sites (Table I) from the Ontario and
Quebec provinces of Canada. The two provinces cover a large territory encompassing various climatic
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regimes. As a consequence, ¯ooding is caused by di�erent mechanisms in di�erent parts of these two
provinces (Gingras et al., 1994). One extreme is in southern Ontario, which experiences hot summers and
short winters. Owing to a number of thaws in winter, as well as the occurrence of numerous thunderstorms
during warm weather months, the annual maximum ¯ood can take place during any month of the year. The
other extreme is in northern Quebec, which experiences short summers and long, cold winters, which lead to
large snowpack accumulations. There, the prolonged melt period leads to a large spring ¯ood peak which is
almost always the annual maximum ¯ood. At the northernmost tip of Quebec, the spring ¯ood peak will
even occur in early July in some years.

Other parts of Ontario and Quebec experience snowmelt and rainfall ¯oods in a proportion that is
essentially dependent on their latitude and proximity to the Atlantic Ocean. This is because a south to north
increased gradient in snowpack exists. The di�erent timing of ¯oods in various parts of the two provinces has
led to varied shapes of the probability density function of the annual maximum ¯ood series. Consequently,
Ontario and Quebec were divided into nine homogeneous regions of roughly similar climate and in which
¯oods were generated by similar mechanisms (Gingras et al., 1994). While all parts of Ontario and Quebec
will experience both snowmelt and rainfall Ð ¯oods in a partial duration (PD) series, the month of
occurrence of these ¯oods, as well as the number of snowmelt ¯oods, will vary between the various parts of
the provinces.

Threshold level for PD series

The PD model requires the abstraction ofN independent events from a record length ofM years (N4M),
all of which exceed a threshold of discharge of magnitude x0 . A variety of approaches are available for
threshold speci®cation; perhaps the most widely used method is based upon the assumption that the number
of values exceeding the threshold each year is considered to be a random variable with a Poisson distribution
with parameter l (Cunnane, 1979)

P�m peaks4 x0 in a year� � Pm � e
ÿllm=m! �20�

where Pm is the probability of having m peaks over the threshold in a year. In this study, selection of
threshold level is made in terms of the variance-to-mean ratio, as proposed by Cunmane (1979). It is based
on the idea that if the time of occurrences of peaks follows a Poisson process, then the ratio of the mean
number of peaks occurring in each year to its variance should be close to or equal to unity.

Figure 1 shows the plot of ratio of the observed variance to observed mean number of exceedances per
year for the site 02ED003 (Nottawasaga near Baxter, used as an illustration site through out this paper),
together with the 5% signi®cant level for a chi-square test of signi®cance. Examining Figure 1, together with
the variance-to-mean ratio plots on the remaining sites, it can be concluded that none of the sites follows a

Table I. Hydrometric stations studied and mean number of exceedances/year (m) at selected threshold level (x0)
for the PD model

Site name and no. Drainage
area (km2)

Years
of record

Threshold
level x0
(m3/s)

Number of
exceedances/
year (m) atx0

Province

Nottawasaga near Baxter (02ED003) 1180 42 26.3 4 Ontario
Saugeen near Port Elgin (02FC001) 3960 76 11.3 4 Ontario
Ausable near Springbank (02FF002) 865 45 17.7 7 Ontario
Pinewood near Pinewood (05PC011) 461 39 6.99 3.5 Ontario
Hall pres d'east Hereford (02OE018) 218 42 23.3 4 Quebec
Beaurivage a Sainte-Etienne (02PJ007) 709 62 44.3 5 Quebec
Mistassini en amon de la Mistassibi (02RD003) 9713 27 294 3 Quebec
Chamouchouane a la Chute a Michel (02RF001) 1 5333 27 467 2 Quebec
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Poisson distribution exactly. Any pronounced departure in the plot was removed by raising the value of x0 ,
or lowering the value of m (mean number of exceedances per year) so as to obtain a ratio close to one. In
theory, once the lowest Poisson-admissible threshold level produces independent peaks, then for any other
higher threshold levels, the corresponding arrival rates of exceedances will follow a Poisson process too. This
lowest Poisson-admissible threshold level will produce the highest number of exceedances, and hence the
most reliable parameter estimates can be expected. The mean number selected for each site based on the ratio
is presented in Table I.

The assumption that the distribution of the number of values exceeding the chosen threshold level is
Poisson distributed is checked by comparing the observed against the predicted values. Figure 2 shows that
the Poisson distribution assumption is valid for 02ED003 for m equal to 4. Similar conclusions were
obtained for other sites.

Figure 1. Ratio of observed variance to observed mean of number of exceedances per year over a threshold (thick line) and 90%
con®dence interval (thin line) for illustration site 02ED003

Figure 2. Comparison of the observed and predicted (by Poisson process) distribution of the occurrences/year of the threshold
exceedances at site 02ED003
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Test of independence

Statistical ¯ood frequency analysis assumes that ¯oods are independent random events. The validity of
this assumption is tested using a scatter diagram showing successive peaks over a threshold occurring within
speci®ed days (subjectively separated, e.g. from 1 to 15 days, and 16 to 30 days) of one another. From the
results presented in Figure 3, it can be concluded that successive peaks are independent.

Data screening for ¯ood-generating mechanisms

The occurrence of AM and PD series on a monthly basis is shown in Figure 4 for the site 02ED003. It
is observed that AM ¯oods tend to occur more frequently during spring, when snowmelt may be the

Figure 3. Magnitudes of successive peaks over a threshold occurring within 1±15 and 16±30 days of one another at site 02ED003
showing the PD series independence

Figure 4. Comparison of relative frequencies of ¯ood occurrences in each month for the AM series and PD series at site 02ED003
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causative factor. However, PD ¯oods can occur at any time of the year, indicating a mixture of causative
¯ood factors.

Figures 5A and 5B present relative frequencies for the AM and PD series at sites 02ED003 and 02RF001,
respectively. In general, both AM and PD series can exhibit unimodal or multimodal density function shapes
depending on the ¯ood-generating mechanisms. Figure 5A shows that site 02ED003 has a unimodal density
function for both AM and PD series. However, for site 02RF001, as shown in Figure 5B, unimodal
distribution is observed for the AM series, but the PD series is bimodal. It has also been observed that at
some other sites PD series exhibit unimodal while AM series exhibit bimodal distributions. Such unimodal
and bimodal shapes can be detected and described by the non-parametric method.

Probability density functions were also examined for data obtained from splitting the AM and PD series
into three di�erent seasons, i.e. snowmelt season (March to May), rain season (June to November) and

Figure 5. Comparison of relative frequencies of ¯ood occurrences for the AM series and PD series at sites 02ED003 (A)
and 02RF001 (B)
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winter thaw season (December to February). Such division by mechanisms is not exact, since the end of the
snowmelt season may vary with location. It was observed that for the AM series, most ¯ood peaks occur in
the snowmelt season, with the exception of station 02FF002. However, for the PD series, a signi®cant
number of ¯oods may occur in any season. It was also noticed that the bimodal distribution of the PD series
at station 02RF001 (as shown in Figure 5B) is composed of two unimodal distributions, one corresponding
to the snowmelt season, the other to the rainfall season.

L-moments analysis

The L-moments for the Nottawasaga River near Baxter (02ED003) are presented in Table II. L-skewness
indicates that the PD series exhibit larger skewness than the AM series. This is similar for the eight sites.
There appears to be a relationship between bimodality and L-kurtosis. In general, bimodal data series exhibit
lower L-kurtosis values. For the commonly used unimodal, two- or three-parameter frequency distributions
in hydrology, the ability to represent the kurtosis of the observed data is an important aspect in the selection
of an appropriate distribution. However, this may mislead in the correct choice of a distribution when a data
set exhibits multimodality.

The computed L-moments ratio for the eight sites under study are plotted in Figure 6, together with
the theoretical L-moments ratios of GEV (with Gumbel distribution as a special case) and GP (with
the exponential distribution as a special case) distributions for the AM series. Figure 7 shows the computed

Table II. L-moments for site 02ED003 (Nottawasaga near Baxter) used for illustration

Model L-moments Minimum
peak
(m3/s)L-location L-scale L-skewness L-kurtosis

l1 l2 t3 t4

Annual maximum 110.7 28.39 0.236 0.183 41.1
Annual exceedance 124.1 24.15 0.435 0.199 81.0
Partial duration 66.24 20.89 0.367 0.210 26.3

Figure 6. L-moment ratios diagram for AM series
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L-moments ratio for the eight sites and those of GEV and GP for the PD series. Examination of these two
®gures shows that, amongst the four distributions, the GEV distribution is the best for describing the AM
series while the GP distribution is the best for describing the PD series. However, while the L-moments ratio
diagrams provide only guidelines in choosing a distribution, they do not guarantee choosing a correct one. In
fact, no methods in present hydrological practice guarantee a correct choice of distribution for use in ¯ood
frequency analysis. For example, the observed L-moments ratios of sites 02FF002 and 05PC001 for the AM
series fall right in the GP distribution range (see Figure 6) because of their low L-kurtosis values. However,
by examining their corresponding density functions it was observed that the low-kurtosis values are caused
by the bimodality of the AM series at these two sites.

Estimation of parameters

The estimated parameters of the GEV distribution [Equation (6)] and the bandwidth for the non-
parametric approach [Equation (16)] are given in Table III for the AM series at site 02ED003. Table IV gives
the bandwidth and the parameters for GP [Equation (5)] distribution for both the PD model and the AE
model, where the AE model is a special case of the PD model with mean peak occurrences per year equalling
one. For the PD model, the parameter k of the GP distribution is close to zero for the site 02ED003,
indicating that an exponential distribution is applicable. As k5 0, the GEV and GP distributions are not
bounded at the upper end. Flood estimation with the NP is upper bounded at (xmax � h), where xmax is the
maximum observed ¯ow in the data series.

Figure 7. L-moment ratios diagram for PD series

Table III. Parameters of the generalized extreme value (GEV) and non-parametric distributions (NP) for the annual
maximum (AM) model at site 02ED003 used for illustration

Model GEV parameters [Equation (6)] NP bandwidth
[Equation (6)]

z b k h

Annual maximum 85.3 37 ÿ0.0998 30.1
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Theoretically, the parameters k for GEV/AM and GP/PD, as well as for GP/AE, should be equal in value
under the Poisson distribution arrival rate assumption. However, Tables III and IV do not support this.
Perhaps such discrepancies can be attributed to the fact that these distributions do not describe exactly all of
the data under study, or, possibly that such di�erences are due to sampling errors in the data.

Figure 8A and 8B shows the estimated density function by the non-parametric method for both AM and
PD series for sites 02ED003 and 02RF001, respectively. The density function at site 02ED003 is unimodal
for both the AM and PD series. For site 02RF001, the density function for the AM series is unimodal, while
it is bimodal for the PD series. This result is consistent with that observed in Figure 5. Such bimodality
cannot be easily detected or described by parametric methods. The detection of bimodality or unimodality in
this paper is visual, and therefore subjective.

Flood quantiles estimation

Flood quantiles corresponding to assumed 50-, 100- and 200-year return periods were estimated from each
®tted distribution for AM and PD models for each site. Table V presents the results for sites 02ED003 and
02RF001.

Examination of Table V shows that parametric distribution results are very sensitive to the skewness of
data, especially for higher return periods. For example, site 02RF001 has a small skewness (L-skewness
5 0.177), and the ¯ood quantiles estimated by both parametric and non-parametric methods are quite close
to each other. However, the di�erences are large for site 02ED003 which has a large skewness value
(40.236). In addition, the sensitivity of a distribution to the skewness of observed data is distribution
dependent. The GP distribution has a higher ability than GEV to accommodate high skewness and long tail
data, which is usually true for the PD data series.

For almost all the sites, the parametric estimations of ¯ood quantiles are signi®cantly di�erent for GEV/
AM, GP/AE and GP/PD. For example, for the site 02RF001, the ¯ood quantile estimated by GEV/AM is
2430 (m3/s), while the corresponding estimation by the GP/PD is 2610 (m3/s). The corresponding results for
the non-parametric models, however, are more consistent. For the non-parametric method, the estimations
obtained from both AM and PD series are very close (2526 and 2556, respectively).

Table IV. Parameters of the generalized Pareto (GP) and non-parametric distributions (NP) for the annual exceedance
(AE) and partial duration (PD) model at site 02ED003

Model GEV parameters [Equation (5)] NP bandwidth
[Equation (16)]

x0 a k h

Annual exceedance 80.95 34.01 ÿ0.2133 25.61
Partial duration 25.98 37.3 ÿ0.0733 21.19

Table V. Flood quantiles (m3/s) estimated by GEV, GP and NP with AM and PD models (stations 02ED003 and
02RF001 used for illustration)

Site no. Return
period
(years)

AM model AE model PD model

GEV NP GP NP GP NP

02ED003 50 262 259 288 263 268 263
100 301 270 347 271 307 270
200 344 279 414 277 348 275

02RF001 50 2240 2387 2300 2392 2390 2406
100 2340 2473 2360 2470 2480 2491
200 2430 2526 2410 2518 2610 2556

AM, annual maximum model; AE, annual exceedance model; PD, partial duration model; GEV, generalized extreme value;
GP, generalized Pareto; NP, non-parametric
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For the PD series analysis, the parametric method is very sensitive to the choice of threshold level. For
example, the 200-year ¯ood quantile estimate at the site 02ED003 by the GP distribution from the PD series
(m� 4) is 348 (m3/s), while from the AE series (m� 1) the corresponding value is 414 (m3/s). However, the
corresponding non-parametric estimates are 275 and 277 for the PD and AE series, respectively.

Figure 9 shows a comparison of distribution ®tting of the AM data at site 02ED003 by the GEV and non-
parametric methods. Figure 10 shows the comparison between the results obtained from the GP and non-
parametric methods for ®tting the PD series. Clearly, the methods give di�erent results, particularly at the
upper tail of the distribution. The non-parametric method approximates the observed data very closely.

CONCLUSIONS

The analysis of annual maxima (AM) and partial duration (PD) series by parametric and non-parametric
methods revealed the following.

1. Both the AM and PD series can be bimodal, which can be described by the NP method. Currently used
parametric distributions, such as GEV and GP, are unimodal and cannot describe bimodal data, unless a
mixture model is used.

Figure 8. Probability density functions estimated by the non-parametric method for both the AM and PD series at sites 02ED003 (A)
and 02RF001 (B)
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2. Parametric distributions, when applied to both AM and PD data, provide quantile estimates that di�er
signi®cantly from each other, and are sensitive to threshold level choice. However, the NP method is not
sensitive to the data type and choice of threshold level, and provides quantile estimates that do not di�er
very signi®cantly when applied to both AM and PD data.

3. Unlike parametric methods, which assume a certain distribution for the observed data, the non-
parametric approach has no such restriction. Because of its simplicity and accuracy, the non-parametric
method is therefore equally applicable to both AM and PD series ¯ood frequency analysis.

4. In summary, it can be concluded that the non-parametric method: (a) is superior to the parametric
method because it is based on a more accurate ®t of the AM and PD series to the data; (b) lacks
sensitivity to decisions about threshold levels selection, series de®nition and choice of probability
distributions; and (c) is more in tune with the often encountered bimodal nature of ¯ood series.
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Figure 9. Comparison of ¯ood quantiles estimated by GEV and non-parametric distributions for the AM series for site 02ED003

Figure 10. Comparison of ¯ood quantiles estimated by GP and non-parametric distributions for the PD series for site 02ED003
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