
HYDRODYNAMICS 

 

 

 THEORY
 

Appendix  A1

Appendix A 
Hydrodynamics and Transport

 

Introduction 
 
CE-QUAL-W2 Version 2 is a two-dimensional water quality and hydrodynamic code supported 
by the USACE Waterways Experiments Station (Cole and Buchak, 1995). This model has been 
widely applied to surface water systems such as lakes, reservoirs, and estuaries. The Version 2 
model predicts water levels, horizontal and vertical velocities, temperature, and 21 other water 
quality parameters. A typical grid for this model is shown in Figure 1 where the vertical axis is 
aligned with gravity. 
 

Qout
z

Qin

x

Two-dimensional hydrodynamics

w

u

g

 

Figure 1. Typical grid for CE-QUAL-W2, a laterally averaged two-
dimensional model of hydrodynamics and water quality. 
 
In the development of Version 3, a riverine model was integrated into the existing CE-QUAL-W2 
code that would provide the capability for modeling entire watersheds. This task was 
accomplished by the following steps: 
 

1. Formal derivation of governing equations and solution algorithm with general 
channel slope 

2. Detailed analysis of algorithm for linking branches and smooth implementation of 
boundary conditions between branches 

3. Algorithm development and changes to basic model code (including branch 
definitions with slope, slope correction to solution algorithm, transfer of momentum 
between internal branches) 
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These topics would be performed with the following constraints and initiatives: 
• Utilize the same solution algorithms as the existing code for hydrodynamics and water quality 

for the riverine system 
• Allow momentum transfer between adjacent branches for internal head boundary conditions  
• Refine the turbulence closure hypothesis for riverine sections 
 

Rationale for Development of River Basin Model for CE-
QUAL-W2  
 
CE-QUAL-W2 Version 2 has been in use for the last couple of decades as a tool for water quality 
managers to assess the impacts of management strategies on reservoir and estuary systems. A 
predominant feature of the model is its ability to compute the two-dimensional velocity field for 
narrow systems that stratify. In contrast to many reservoir models that are zero-dimensional 
hydrodynamic models, an understanding of the fluid mechanical transport can be as important as 
the reaction kinetics in the water column.  
 
One limitation of CE-QUAL-W2 is its inability to model steeply sloping river stretches and hence 
an entire water basin. Models, such as WQRSS, HEC-5Q, and HSPF, have been developed for 
water basin modeling but have serious limitations. A serious problem is that the HEC-5Q (similar 
to WQRSS) and HSPF models incorporate a one-dimensional longitudinal river model with a one-
dimensional vertical reservoir model (only one-dimensional in water quality and zero dimensional 
in hydrodynamics). The modeler must choose the location of the transition from 1-D longitudinal 
to 1-D vertical. Besides the problem of not solving for the velocity field in the stratified, reservoir 
system, any point source inputs to the reservoir section are spread over the entire longitudinal 
distribution of the reservoir cell. This has created problems in two water quality modeling studies 
that used WQRSS as a modeling tool: 
 
• Wahiawa Reservoir (a narrow, 5 mile long reservoir with 100 ft depth at the dam). The HEC 

WQRSS model was initially applied to this two fork reservoir system. The system is shown 
below in Figure 2. 
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Figure 2. Wahiawa Reservoir, Oahu, Hawaii. 
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The WQRSS model schematization is contrasted to the CE-QUAL-W2 schematization for 
Wahiawa Reservoir in Figure 3. The initial reservoir study using WQRSS produced poor results 
even after expending large resources to “make” the model work. The modeling effort did not 
provide a management tool for water quality managers because of gross errors in setting up the 
model, i.e., combining the 2 forks and spreading the discharge from the wastewater treatment plant 
throughout the full longitudinal length of the reservoir. 
 
• Tualatin River, Oregon (a 32 mile long, narrow, stratified system, with pools 25-30 ft deep). 

The WQRSS model was applied to this system incorrectly because the modelers decided to 
break the system from a river to a reservoir at the location of a wastewater treatment plant 
discharge. Hence, a large section of the Tualatin that stratified was modeled as completely 
mixed because the modelers knew it would be inappropriate to spread a point source over 32 
miles if this section was chosen as a stratified system. A later application of CE-QUAL-W2 
(Berger and Wells, 1995) correctly represented the physics of the system. 

 
In these 2 cases, the application of WQRSS had serious limitations for the reservoir section. CE-
QUAL-W2 was subsequently applied to these cases and was able to be used effectively because of 
its 2-D hydrodynamics and water quality. 
 
Other hydraulic and water quality models in common use for unsteady flow include the 1-D 
dynamic EPA model DYNHYD (Ambrose, et al. 1988), used together with the multidimensional 
water quality model WASP. WASP relies on DYNHYD for the 1-D hydrodynamics. If WASP is 
used in a multi-dimensional schematization, the modeler must supply dispersion coefficients to 
allow transport in the vertical or lateral directions. Also, the Corps model, CE-QUAL-
RIV1(Environmental Laboratory, 1995), is a one-dimensional dynamic flow and water quality 
model used for one-dimensional river or stream sections. Each of these models do not have the 
ability to characterize adequately the hydraulics or water quality of deeper reservoir systems or 
deep river pools that stratify.  
 
CE-QUAL-W2, even though able to handle narrow systems that stratify, is not well-suited for 
one-dimensional river channels. In the development of CE-QUAL-W2, vertical accelerations were 
considered negligible compared to gravity forces. This assumption lead to the approximation of 
hydrostatic pressure for the z-momentum equation. In sloping channels, this assumption is not 
always valid because the vertical accelerations cannot be neglected if the x and z axes are aligned 
with an elevation datum and gravity, respectively. Also, the current CE-QUAL-W2 algorithm does 
not allow the upstream bed elevation to be above the downstream water surface elevation. If one 
wanted to use the existing CE-QUAL-W2 for sloping channels, one would have to break the 
sloping section into multiple small branches.  Because water basin modeling is becoming more 
and more essential for water quality managers, providing the capability for CE-QUAL-W2 to be 
used as a complete tool for water basin modeling is an essential step in upgrading the state-of-the-
art in modeling river basins. 
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Figure 3 Comparison of WQRSS  and CE-QUAL-W2 schematization for Wahiawa 
Reservoir. 
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Approach to the Problem 
 
There are many approaches that could be implemented within CE-QUAL-W2 for riverine 
branches. By choosing a theoretical basis for the riverine branches that uses the existing 2-D 
computational scheme for hydraulics and water quality, the following benefits accrued: 
 
• code updates in the computational scheme will affect the entire model rather than just one of 

the computational schemes for either the riverine or the reservoir sections leading to easier 
code maintenance 

• no changes would be made to the temperature or water quality solution algorithms 
• by using the two-dimensional framework, the riverine branches would also have the ability to 

predict the velocity and water quality field in two dimensions. This has advantages in 
modeling the following processes: sediment deposition and scour, particulate (algae, detritus, 
suspended solids) sedimentation, and sediment flux processes. 

• since the entire watershed model has the same theoretical basis, setting up branches and 
interfacing branches involves the same process whether for reservoir or riverine sections, thus 
making code maintenance and model set-up easier. 

 
The theoretical approach allowed each branch segment to have a channel slope. The governing 
equations will then be re-derived assuming that the gravity force in the x and z-momentum 
equations is adjusted by the channel slope. This is shown schematically in Figure 4. 
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Figure 4. Schematic of river-reservoir linkage where α is the slope of the channel bottom. 
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Development of Governing Equations for CE-QUAL-W2 
 
This section will formally derive the governing equations for CE-QUAL-W2 highlighting 
assumptions and limitations of the model equations. 
 
 
Coordinate System 
 
The general coordinate system that will be used is shown in Figure 5. 
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Figure 5. Coordinate system for governing equations (x is oriented E, y is 
oriented N, and z is oriented upward). 
 
Note that Ω is a vector which represents the angular velocity of the earth spinning on its axis. The 
rotation of our coordinate system can result in significant horizontal accelerations of fluids. This 
though is usually restricted to large water bodies, such as large lakes and ocean systems. The force 
that causes horizontal accelerations as a result of the spinning coordinate system is termed the 
Coriolis force. 
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Turbulent Time-Averaged Equations 
 
The governing equations are obtained by performing a mass and a momentum balance of the fluid 
phase about a control volume. The resulting equations are the continuity (or conservation of fluid 
mass) and the conservation of momentum equations for a rotating coordinate system (Sabersky et 
al., 1989; Cushman-Roisin, 1994; Batchelor, 1967). After using the coordinate system in Figure 5, 
applying the following assumptions: 
 
• incompressible fluid 
• centripetal acceleration is a minor correction to gravity 
• Boussinesq approximation    
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∆
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   where       where    is a base value 

and    has all variations in   
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and substituting the turbulent time averages of velocity and pressure as defined below 
 
• all velocities and pressure are considered the sum of turbulent time averages and deviations 

from that average, i.e., u u u= + ′ , where u
T

udt
t

t T

=
+

∫
1

 as shown in Figure 6. The other 

terms are v v v= + ′ ; w w w= + ′  and p p p= + ′  where the overbar represents time 
averaged and the prime represents deviation from the temporal average; 
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Figure 6. Sketch of turburlent time averaging for velocity. 
 
the governing equations become after simplification: 

Continuity  
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where u, v, w are the velocities in the x, y, and z axes, respectively;  
 

x-Momentum Equation 
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where 
τxx: turbulent shear stress acting in x direction on the x-face of control volume (see Figure 7) 
τxy: turbulent shear stress acting in x direction on the y-face of control volume (see Figure 7) 
τxz: turbulent shear stress acting in x direction on the z-face of control volume (see Figure 7) 
 µ: dynamic viscosity  
 Ω: component of Coriolis acceleration where 
 Ωz: Ω E sinφ  

Ωy: Ω E cosφ  
φ: latitude of the earth 
ΩE: rotation rate of the earth 
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Figure 7. Sketch of turbulent shear stresses in x-direction. 
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y-Momentum Equation 
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where:  τyx: turbulent shear stress acting in y direction on the x-face of control volume (Figure 8) 
 τyy: turbulent shear stress acting in y direction on the y-face of control volume 
 τyz: turbulent shear stress acting in y direction on the z-face of control  
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Figure 8. Sketch of turbulent shear stresses in y-direction. 

z-Momentum Equation 
 
∂
∂

∂
∂

∂
∂

∂
∂

ρ
∂
∂

µ
ρ

∂
∂

∂
∂

∂
∂ ρ

∂τ
∂

∂τ

∂
∂τ
∂

w
t

u
w
x

v
w
y

w
w
z

u v g

p
z

w
x

w
y

w
z x y z

y x

zx zy zz

+ + + − + = −

− + + +








 + + +











2 2

1 12

2

2

2

2

2

Ω Ω
 

 
where: τzx: turbulent shear stress acting in z direction on the x-face of control volume (Figure 9) 
 τzy: turbulent shear stress acting in z direction on the y-face of control volume  
 τzz: turbulent shear stress acting in z direction on the z-face of control volume  
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Figure 9. Sketch of turbulent shear stresses in z-direction. 
 
Note that the turbulent shear stresses are defined as follows: 
 

τ ρx x u u= ′ ′  

τ ρx y u v= ′ ′  is the same as τ ρy x v u= ′ ′  

τ ρx z u w= ′ ′   is the same as τ ρz x w u= ′ ′  

τ ρy y v v= ′ ′  

τ ρyz v w= ′ ′   is the same as τ ρz y w v= ′ ′  

τ ρz z w w= ′ ′  
 
Coriolis Effect 
 
As noted above, all the Ωx terms are zero and can be eliminated from the y and z-momentum 
equations. If one integrates over the y-direction (therefore assuming the net velocity in y is zero) 
and assumes that the horizontal length scale is much greater than vertical length scale, it can be 
shown by using scaling arguments that the Coriolis acceleration forces are negligible (Cushman-
Roisin, 1994). Hence, prior to lateral averaging, the Coriolis acceleration terms will be neglected. 
 
Adjusting the Coordinate System 
 
The coordinate system will be transformed into a form compatible with the original W2 
development where the vertical axis is in the direction of gravity. Also, as shown in Figure 10, the 
coordinate system will be oriented along an arbitrary slope. 
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Figure 10. General coordinate system with z-axis compatible with original 
derivation of W2 model. 
 
The gravity acceleration is a body force that is then represented by a vector:  
 
v v
g g h= − ∇  
 
where h is the surface normal from the earth’s surface (h is an elevation in the opposite direction 
to the acceleration of gravity vector) and g is the acceleration constant (9.8 m/s2).  
 
This term can be written as 3 vector components: 
 

g g
h
xx = −

∂
∂

 

g g
h
yy = −

∂
∂

 

g g
h
zz = −

∂
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These gravity components can be applied to an arbitrary channel slope as shown in Figure 11. 
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Figure 11. Sketch of channel slope and coordinate system for W2 where the 
x-axis is oriented along the channel slope. 
 
 
The channel slope can also be incorporated into the definition of the gravity vector if the x-axis is 
chosen parallel to the channel slope as: 
 
The channel slope is defined as So = tanα  
 
and also 
 

g g
h
x

gx = − =
∂
∂

αsin  

g g
h
z

gz = − =
∂
∂

αcos  

 

The gravity acceleration in y is assumed to be negligible since 
∂
∂
h
y

= 0  in the lateral direction of 

the channel. 
 
 
Governing Equations for General Coordinate System 
 
After making the following simplifications: 
• redefine coordinate system 
• eliminate Coriolis effects 
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• neglect viscous shear stresses 
 
The governing equations become: 
 

Continuity 
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y-Momentum Equation 
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z-Momentum Equation 
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Simplification of z-Momentum Equation 
 
Assuming that the longitudinal length scale is much greater than the vertical length scale, this 
makes all vertical velocities << horizontal velocities. A result of this assumption is that vertical 
velocities are very small such that the z-momentum equation becomes the hydrostatic equation: 
 
1
ρ

∂
∂

α
p
z

g= cos  

 
This assumption prevents the model from accurately modeling vertical accelerations of the fluid as 
a result of convective cooling at night and other such vertical accelerations.  
 
Further Simplification of 3-D equations by Lateral Averaging 
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The governing equations above will be laterally averaged after decomposing all velocities and 
pressure into a lateral average and a deviation from the lateral average. The vertical and 
longitudinal velocities and pressure are defined as follows: 
 

u u u= + " where  u udB y

y
= ∫1

1

2

y  and B is the width of the control volume 

w w w= + "  
v v v= + ′′  
p p p= + ′′  

 
The double overbars represent the spatial average of the temporal average quantity. The double 
prime represents the deviation from the lateral average and is a function of y. This is shown in 
Figure 12. 
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Figure 12. Lateral average and deviation from lateral average components of 
longitudinal velocity. 
 
These definitions are substituted into the turbulent time-average governing equations and then 
laterally averaged. The y-momentum equation is neglected since the average lateral velocities are 
zero, i.e., v = 0. , and cross shear stresses that contribute to vertical mixing will be computed 
from the analysis of wind stress. The equations that remain are the continuity, x-momentum, and 
z-momentum equations. 
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Continuity Equation 
 
The continuity equation becomes after substituting the above velocity components and laterally 
averaging 
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Also, note that: 
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where q is defined as the net lateral inflow per unit volume of cell [T-1] 
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Combining terms, the continuity equation becomes 
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x-Momentum Equation 
 
The laterally averaged x-momentum equation is more easily simplified by writing it in 
conservation form (this can be verified by using the continuity equation with the x-momentum 
equation),   
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Each term in this equation can be simplified as follows (note that the spatial average of any double 
primed variable goes to zero by definition): 
 
• The unsteady acceleration term: 
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• The convective acceleration terms 
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Similarly for the other 2 terms: 
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• The gravity term 
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• Pressure gradient term 
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or the above equation can be written, assuming that the derivative of the lateral average pressure 
gradient in the x-direction is not a function of y:  
 

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

( ) ( )p p
x B

p p
x

dy
B

p
x

dy
B

p
x

dy
B

p
x

B
B x

p dy
p
xy

y

y

y

y

y

y

y+ ′′
=

+ ′′
= +

′′
= + ′′ =∫ ∫∫ ∫

1 1 1 1 1

1

2

1

2

1

2

1

2

 
 
• The shear stress terms 
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Then collecting all terms and neglecting all dispersion terms, the final x-momentum equation is 
then after simplification: 
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Summary of Laterally Averaged Equations 
 
In the development of CE-QUAL-W2 in Cole and Buchak (1995), the lateral average terms were 
represented by uppercase characters, such that  u U= , w W= , and p P= . The shear stress 
terms will be assumed to be lateral averages and the double overbars will be dropped for 
convenience. Making these simplifications, the governing equations become 

 Continuity Equation 
 
∂
∂
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∂

UB
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z
 =  qB  

x-Momentum Equation 
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z-Momentum Equation 
1
ρ

∂
∂

α
P
z

g= cos  

 
Now we have 3 equations and 3 unknowns: U, W, and P. 
 

Simplification of the Pressure Term 
 
 
The z-momentum equation reduces to 
 

 P = + ∫P g dza

z
cosα ρ

η
 after integration from a depth z to the water surface defined as z=η. Pa 

is the atmospheric pressure at the water surface (see Figure 13). 

x

z

z=zsurface=η

z=h=zbottom

g
Pa

 

Figure 13. Illustration of layout for simplification of pressure term. 
 
This equation for pressure is now substituted into the x-momentum equation and simplified using 
Leibnitz rule. The pressure gradient term in the x-momentum equation then becomes: 
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The first term on the RHS is the atmospheric pressure term (accelerations due to atmospheric 
pressure changes over the water surface), the second is the barotropic pressure term (accelerations 
due to water surface variations), and the third is the baroclinic pressure term (accelerations due to 
density driven currents).  
 
In CE-QUAL-W2, the atmospheric pressure term is assumed to be zero and is neglected. This 
implies that for long systems during severe storms the model will not be able to account for 
accelerations on account of atmospheric changes. (For a large physical domain, variations in 
meteorological forcing may be significant. This is discussed in Variability in Meteorological 
Forcing.) The pressure term then becomes with this simplification 
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The revised form of the x-momentum equation is then 
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1 1  

 
Effectively, we have removed pressure from the unknowns by combining the z-momentum and x-
momentum equations, but we have added η as an unknown. 

Free Water Surface Equation 
 
This equation is a simplification of the continuity equation. The continuity equation integrated 
over the depth from the water surface to the bottom is called the free water surface equation. 
Figure 14 and Figure 15 are definition sketches for the CE-QUAL-W2 cell layout without and 
with a channel slope, respectively.  
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Figure 14. W2 coordinate system with no channel slope. 
 
The continuity equation is integrated over the depth as follows: 
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The first term can be expanded as follows using Leibnitz’s rule: 
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Figure 15. W2 coordinate system with finite channel slope. 
 
 
 
The integral of the vertical flow rate over z relates to changes in water surface elevation as shown 
below: 
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Combining these term together, the free surface equation becomes 
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Canceling out terms and applying the no-slip boundary condition that Uh is zero,  
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∂η
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η
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UBdz B
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h h

∫ ∫− =  

 
or 
 

B
t x

UBdz qBdz
h h

η
η η

∂η
∂

∂
∂

= −∫ ∫  

 
where Bη is the width at the surface. 

Equation of State 
 
The density must be know for solution of the momentum equations. The equation of state is an 
equation that relates density to temperature and concentration of dissolved substances. This 
equation is termed 
 
ρ  =  f(T , , )w TDS ssΦ Φ  

 
where  f(Tw,ΦTDS, Φss)=density function dependent upon temperature, total dissolved solids or 
salinity, and suspended solids. 
 
Hence, the temperature, total dissolved solids, and suspended solids must be known and are 
determined from the water quality model. 
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Summary of Governing Equations 
 
Table 1 shows the governing equations after lateral averaging for a channel slope of zero (original 
model formulation) and for an arbitrary channel slope. Parameters used in Table 1 are illustrated in 
Figure 16. 
 

Table 1. Comparison of governing equations for CE-QUAL-W2 with and without 
channel slope. 
Equation Existing governing equation assuming no channel 

slope 
Governing equation assuming an arbitrary channel slope 

x- 
momentum 

∂
∂

∂
∂

∂
∂

−

∂
∂

∂
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1 1
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α α
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1 1

 

z-
momentum 0

1
= −g

P
zρ

∂
∂

 0
1

= −g
P
z

cosα
ρ

∂
∂

 

free surface 
equation B

t x
UBdz qBdz

h h

η
η η

∂η
∂

∂
∂

= −∫ ∫  B
t x

UBdz qBdz
h h

η
η η

∂η
∂

∂
∂

= −∫ ∫  

Note: U,W: horizontal and vertical velocity  B: channel width 
 P: pressure     g: acceleration due to gravity 
 τx,τz: lateral average shear stress in x and z  ρ: density 
 η: water surface     α: channel angle 
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Figure 16. Definition sketch for channel slope (exaggerated slope). 

 

Linkage of Branches with Internal Head Boundary 
Conditions 
 
Linkage of Mainstem Branches 
 
One issue in the development of the river basin model is the linkage of branches of different 
channel slope orientation. Figure 17 shows in detail some of the variable definitions with the 
current sloped channel scheme. 
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Figure 17. Variable definitions for  W2 model with arbitrary channel slope. 
 
 
 
 
But the vertical velocity of a cell is not determined at the side edge of a segment, but at the bottom 
of the segment. In order for all the volume to be passed from one cell to another, all the flow from 
the downstream segment (ID) should be transferred to upstream segment (IU). Since the model 
does not assume strong vertical accelerations, we may be forced to neglect the vertical component 
of velocity at this transition and assume that the longitudinal velocity entering segment IU is UID.  
 
The linkage between branches when the grid sizes are different between the upstream grid and the 
downstream grid were accomplished by flow and mass conservation at the linkage. This is 
computed internally. This spatial averaging of the flow (and velocity), heat and mass to preserve 
flow and constituent mass between branches is illustrated conceptually in Figure 18. 
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ID

IU

 

Figure 18. Transfer of mass and momentum between main stem branches 
with unequal grid spacing. 
 
Linkage of Tributary Branches 
 
The existing W2 model assumes all tributary branches come in at right angles to the main channel. 
In many cases this is appropriate. This orientation (shown in Figure 19) allows volume exchange, 
but no momentum exchange between branches. The CE-QUAL-RIV1 model (Environmental 
Laboratory, 1995) and the EPA DYNHYD (Ambrose, et al., 1988) also neglect momentum effects 
of lateral tributary inflows. For branches with arbitrary channel orientation (as in Figure 20), code 
changes will be made to allow momentum, in addition to volume (this is accounted for in the free 
surface equation as q), to be exchanged between branches.  
 
In this section the linking of these tributary branches with the main stem and preserving 
momentum between them will be discussed. 
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Figure 19. Linkage of tributary branches with existing W2 model. 

θ2 i-1

θ2 i+1

θ2 i

θ2 tributary branch

x

x U Uy
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Figure 20. Linkage of tributary branch coming in at an angle to main 
branch. 
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The tributary inflow can create shear stress along both the longitudinal the axis of the main stem 
branch and along the y-axis of the segment. In the current model, this cross-shear term is neglected 
and does not impact vertical mixing. The only vertical mixing as a result of cross-shear is from the 
wind component in the lateral direction. For this new formulation, the cross-shear mixing will be 
added to the cross-shear wind stress for the computation involving the vertical eddy viscosity and 
vertical diffusivity. This involves determining the y and x velocity components of the entering 
branch as shown in Figure 21. 

θ2 main stem

θ2 tributary branch

x

x U Uy

Ux

N

 
 

Figure 21. Schematic of branch connection. 
Longitudinal Momentum 
The vector component of velocity in the x-direction of the main channel, Ux,  can be computed by 
analysis of the channel orientations. This component in the x-direction would be: Ux=Ucosβ where 
U is the longitudinal velocity of the tributary at segment ID for the tributary branch and β is the  
difference in the angle between the main stem and tributary segments (see Figure 22).  
 

Ux

Uy

β

θ2 main stem

θ2 tributary
β=θ2main stem-θtributary

β

β

U

 

Figure 22. Schematic of x and y velocity components. 



HYDRODYNAMICS 

 

 

 THEORY
 

Appendix  A29

 
 
The conservation of momentum about a control volume, the main stem segment, would result in 
an additional source of momentum. Lai (1986) shows that the correction to the x-momentum 
equation would be: 
 
qBU x  
where q is the lateral inflow per unit length.  
 
This arises from re-deriving the momentum equations and assuming that all the fluid (q) entering 
the segment is moving at the velocity Ux. This correction to the x-momentum equation would be  
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α α
∂η
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α
ρ

∂ρ
∂

ρ
τ

ρ
τ

η

1 1

momentum from side tributaries
123

 

 
 
Cross-shear of Tributary Inflow 
 
The y-velocity coming into a reservoir also may contribute significantly to vertical mixing. The y 
component of a tributary inflow is (see Figure 34): Uy=Usinβ. Since there is no y-momentum 
equation, the only mechanism for mixing energy with the present formulation of the vertical shear 

stress is the cross-shear stress from the wind given earlier as τ ρwy D a hC W≅ −2
1 2sin( )Θ Θ . 

This cross-shear stress accounts for the shear stress and mixing that results from wind blowing 
across the y-axis of the segment. The lateral branch inflow at a velocity, Uy, could be thought of as 
an additional component of that stress under the current context of the turbulence closure 
approximations.  
 
Assuming that the water in the y-direction has zero velocity, the additional shear stress could be 
parameterized as an interfacial shear: 
 

τ ρytributary y

f
U≅

8
2  

 
where f is an interfacial friction factor. For two-layer flow systems, f has been found to be of order 
0.01. The value of f for this non-ideal approach could be determined by numerical computation. 
Hence, the value of the cross-shear term would be increased by a lateral tributary inflow. This will 
be evaluated by numerical experiments computing the magnitude of the cross-shear term from 
wind and from lateral inflow. A more robust theoretical approach may be needed to account for 
this increase in lateral shear, but that may be necessary only if the model includes the y-
momentum equation.  
 



HYDRODYNAMICS 

 

 

 THEORY
 

Appendix  A30

Implementation of River Basin Model in W2 Solution 
Technique  
 
The corrections to the governing equations incorporating the sloping channel and the transfer of 
momentum from a side tributary are incorporated in the new solution technique as shown below.  
 
 
Numerical Solution for the Free-Water Surface Equation 
 
The following derivation of the solution technique will follow the derivation format and approach 
used in Cole and Buchak (1995). Deviations from or minor corrections from that approach will be 
noted. 
 
The free surface equation,  
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will be solved by substituting the momentum equation, 
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in finite difference form and then simplifying. The finite difference form of the momentum 
equation is 
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Defining for simplicity the term F as 
 

F
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∂
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or substituting in for τxx, F becomes 
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(Note that in Cole and Buchak (1995) the term F is defined differently in Equation A-10 than in 

Equation A-18.) Substituting in the term UBi
n+1  in the free surface equation for UB, the free 

surface equation becomes 
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Some of these terms can be simplified as follows: 
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Then substituting these into the above equation we obtain 
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Then all terms with η are grouped on the LHS such that 
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The first term on the LHS can be put into a backward finite difference form as 
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Then using a second order central difference for the second derivative and a first order backward 
difference for the first derivative such that 
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Also, noting using a backward difference 
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Then grouping and collecting terms and multiplying through by ∆t∆x, the LHS becomes after 
simplification 
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where the RHS is defined as 
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and is evaluated at time level n. 
 
The integral of the cell widths can be put into a summation over the vertical layers as 
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where BHr is the value of the width times the layer depth for the right-hand side of a cell (see 
Figure 23). In the W2 code this is the variable BR(I,K) times H(K), or the derived variable 
BHR(I,K). 
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Figure 23. Cell grid definitions. 
 
Some of the RHS terms can be put into a format compatible with the model schematization such 
as 
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The lateral inflow of momentum term represents the gradient over x of the inflow momentum.  
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Compiling these terms into one equation, we obtain 
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This equation is solved for the water surface elevation at the n+1 time level using the Thomas 
algorithm. The boundary condition implementation is the same as described in Cole and Buchak 
(1995). 
 
 
Numerical Solution of the Horizontal Momentum Equation 
 
The x-momentum equation, 
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is solved using either a fully explicit or an explicit/implicit finite difference solution technique. In 
the W2 Version 3 code, the User specifies either of these techniques. 

Explicit Solution 
 
This scheme is based on solving the partial differential terms using an explicit finite difference 
technique where 
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The various terms are put into finite difference form as follows: 
 
This longitudinal advection of momentum [termed ADMX in the W2 code] is an upwind 
difference scheme (where the order of differencing is dependent on the sign of U), i.e., for U>0  
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The vertical advection of momentum [termed ADMZ in the W2 code] is also an upwind scheme 
based on the velocity of W, i.e., for W>0 or downward flow 
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The gravity force [termed GRAV in the W2 code] is 
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The pressure gradient [termed HPG in the W2 code] is 
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The horizontal advection of turbulent momentum [termed DM in the W2 code] is 
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The contribution to longitudinal momentum by lateral branch inflows is  
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Using the definition of the shear stress, 
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the vertical transport of momentum is 
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Implicit Scheme 
 
The implicit technique was utilized to reduce the time step limitation for numerical stability when 
values of Az were large, as for an estuary or a river system. This occurs because the time step 
limitation is a function of Az. Only the vertical transport of momentum term was solved 
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implicitly. All other terms for the solution of the horizontal momentum equation were the same as 
the explicit scheme. 
 
The horizontal momentum equation was split into the following 2 equations: 
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Equation 1 is written as 
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where U* is the velocity at the new time level before the application of Equation 2. Equation 3 is 
solved similarly to the solution of the fully explicit technique outlined above. 
 
Equation 2 is then solved using a fully implicit technique as 
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This can be rewritten as 
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Regrouping terms at n+1 time level on the LHS, the equation can be written as 
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1=D  
 
The resulting simultaneous equations are solved for Un+1 using the Thomas algorithm. 
 

Turbulent Advective-Diffusion Equation 
 
As in the momentum equation, we will introduce time-averaged variables for velocity (see Figure 
24) and concentration (see Figure 25).  
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Figure 24. Velocity variability with time. 
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Figure 25. Variability of concentration with time. 
 
Here we take the instantaneous velocity and concentration and decompose it into a mean and an 
unsteady component, as 

u(t) =  u +  u (t) where  u =  
1
T

  u(t)dtt
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Similarly for w, v, and c: 
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Then substituting these into the 3-D governing equation and time averaging the equation, we obtain:  
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The “new terms” in our governing equation represent mass transport by turbulent eddies. As the 
intensity of turbulence increases, turbulent mass transport increases. Notice also that all velocities and 
concentrations are time averaged. We now define the following turbulent mass fluxes: 
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where Ex, Ey, and Ez are turbulent diffusion coefficients. Substituting into the above 
equation: 
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In turbulent fluids, Ex, Ey, and Ez >> D, hence D can be neglected, except at interfaces where 
turbulence goes to zero. The turbulent diffusion coefficients can be thought of as the product of 
the velocity scale of turbulence and the length scale of that turbulence. These coefficients are 
related to the turbulent eddy viscosity - one is turbulent mass transport, the other is turbulent 
momentum transport between adjacent control volumes. In general, these turbulent diffusion 
coefficients are non-isotropic and non-homogeneous.  

 

Development of W2 Water Quality Transport Model  
 
 
For a 2-D model like CE-QUAL-W2, we will now introduce spatial averages across the lateral 
dimension of the channel of the turbulent time-averaged quantities, such as 
 

c =  c +  c"  

 u =   u +  u"

w =   w +  w"

 

 
where the double overbar is a spatial average over y and the double prime is the deviation from the 
spatial mean as illustrated in Figure 26 for velocity and Figure 27). 
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Figure 26. Lateral average of the velocity field. 
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Figure 27. Lateral average of the concentration field. 
 
These are substituted into the governing equation and then the governing equation is integrated 
over the width such that 
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If you are interested in the mathematics, note how the following terms are simplified: 
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Note that the spatial average of any double primed variable goes to zero by definition. 
 
These turbulent dispersion coefficients are defined as  
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These dispersion terms are a result of spatial averaging of the velocity field laterally. In general, 
except at an interface, Dx >> Ex >> D and similarly for Dz >> Ez >> D. Substituting in for the 
dispersion coefficients, and using q to be the net mass transport from lateral boundaries, this 
equation becomes 
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If we drop the overbars replacing them with capitals, replace c with Φ, we then obtain the 
governing equation of CE-QUAL-W2: 
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 Φ = laterally averaged constituent concentration,  g m-3 
 
Note that this can be concentration or temperature since the concentration of heat can be 

determined to be ρcpT where ρ is the fluid density, cp is the specific heat of water, 
and T is the temperature. Hence, the above equation with C or ρcpT for Φ would 
be appropriate governing equations for concentration or temperature, 
respectively. 

 
 Dx = longitudinal temperature and constituent dispersion coefficient,  m2 sec-1 
 Dz = vertical temperature and constituent dispersion coefficient,  m2 sec-1 
 qΦ = lateral inflow or outflow mass flow rate of constituent per unit 

volume,   
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   g m-3 sec-1 
 SΦ = laterally averaged source/sink term, g m-3 sec-1 
 
 
In order to solve this equation we now need to determine the following: 
 
• laterally averaged velocity field - from momentum equations 
• appropriate boundary and initial conditions  
• Dx and Dz   
• source/sink terms laterally averaged  
 
 

Numerical Solution 
 
The first step in the numerical solution is to define the computational grid (see below).  The grid is 
space-staggered since some variables are defined at one location and the remainder are displaced 
by ∆x/2 or ∆z/2.  The grid discretizes a waterbody into computational cells whose locations are 
defined by their segment (i) and layer number (k), i.e., cell (k,i).  Variables are located at either the 
center or boundary of a cell.  Variables  defined at the boundary include the velocities U and W, 
dispersion coefficients Ax, Dx, Az, and Dz, and internal shear stress τx.  The variables ρ, Φ, P, and 
B are defined at the cell center. 

 
 
 Figure A1.  Variable locations in computational grid. 
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There is a rational basis for choosing variable locations.  Since the constituent concentration is 
defined at the center and velocities are defined at the boundaries, spatial averaging of velocities is 
not required to determine changes in concentration over time.  Also, the horizontal velocity is 
surrounded by a cell with water surface elevations and densities defined on either side.  Thus, the 
horizontal velocity is computed from horizontal gradients of the surface slope and densities 
without requiring spatial averaging of these variables. 
 
The geometry is specified in Figure 1 by a cell width B, cell thickness H, and cell length ∆x.  
Several additional geometric variables are used in the calculations.  These include the average 
cross-sectional area between two cells (k,i) and (k,i+1) 

the average widths between two cells (k,i) and (k+1,i) 
 

and the average layer thickness between layers k and k+1 
 

The numerical procedure for solving the six unknowns at each timestep is to first compute water 
surface elevations.  With the new surface elevations, new horizontal velocities can be computed.  
With new horizontal velocities, the vertical velocities can be found from continuity.  New 
constituent concentrations are computed from the constituent balance.  Using new horizontal and 
vertical velocities, the water surface elevation equation, can be solved for η simultaneously.  The 
solution for η is thus spatially implicit at the same time level and eliminates the surface gravity 
wave speed criterion: 

which can seriously limit timesteps in deep waterbodies. 
 
 
Constituent Transport 
 
Version 1.0 used upwind differencing in the constituent transport advective terms in which the cell 
concentration immediately upstream of the velocity is used to calculate fluxes.  A major problem 
with upwind differencing is the introduction of numerical diffusion given by (for longitudinal 
advection): 

k ,ir
k ,i k ,i k ,i k,i+1B H  =  B  H  +  B  H

2
        (A-14) 
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A similar condition holds for vertical advection.  In many cases, numerical diffusion can 
overwhelm physical diffusion producing inaccurate results when strong gradients are present.  The 
problem is particularly pronounced for stratified reservoirs and estuaries. 
 
Numerical diffusion has been reduced by implementing an explicit, third-order accurate 
QUICKEST horizontal/vertical transport scheme (Leonard, 1979), and time-weighted, implicit 
vertical advection.  Tests of this scheme are reported in Chapman and Cole (1992). 
 
QUICKEST uses an additional spatial term to estimate concentrations used in computing 
horizontal and vertical fluxes.  A nonuniform grid QUICKEST scheme was developed using a 
three-point Lagrangian interpolation function to estimate constituent values at grid cell interfaces.  
Specifically, advective multipliers for each of three upstream weighted grid cells are derived in 
terms of cell lengths and the local cell interface velocity.  Time invariant parts of the interpolation 
functions are calculated once thus minimizing computations for additional constituents. 
 
Implicit vertical transport including variable layer heights has also been implemented.  Vertical 
diffusion is fully implicit and advection employs a time-weighted, central difference, implicit 
scheme.  A unique feature of vertical advection, in the explicit part of the time-weighted scheme, 
is QUICKEST which increases overall accuracy. 
 
As implemented in the code, the new transport scheme is a two-part solution for constituent 
concentrations at the new timestep.  First, horizontal advection is computed using QUICKEST and 
diffusion is computed using central differencing.  This part also includes the explicit vertical 
advection contribution (which utilizes QUICKEST) and all sources and sinks. 
 
Next, the implicit part of vertical advection and diffusion are included.  Diffusion is always fully 
implicit.  The user can time-weight advection by specifying a value for [THETA] which varies 
from 0 to 1.  For [THETA] equal to 0, the solution is explicit in time and vertical advection is 
accounted for in the first part of the algorithm.  For [THETA] equal to 1, the solution is fully 
implicit in time and vertical advection is accounted for in this part of the algorithm.  A Crank-
Nicholson scheme where vertical advection is time-weighted between the explicit (using 
QUICKEST) and implicit parts results if [THETA] is set to 0.5.  The following is a description of 
the preferred transport scheme - QUICKEST. 
 
Non-Uniform Grid QUICKEST Formulation.  In one dimension, the conservative control 
volume advective transport of a constituent Φ integrated over a timestep is: 

    where
 

          =  numerical diffusion
 

c =  
U t

x

eα

∆
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where 
 
 Φi = constituent concentration at a grid point 
 Φr,l = right and left cell face constituent concentrations 
 Ur,l = right and left cell face velocity 
 t = time 
  
The QUICKEST algorithm was originally derived using an upstream weighted quadratic 
interpolation function defined over three uniformly spaced grid points.  This interpolation function 
estimates cell face concentrations required by the conservative control volume transport scheme.  
For example, the right cell face concentration estimate for a flow positive to the right is: 

where T are advective multipliers which weight the contribution of three adjacent grid point 
concentrations. 
 
The advective multipliers are obtained by collecting terms associated with each constituent 
defined by the QUICKEST advection operator.  For a non-uniform grid, a combination of two and 
three point Lagrangian interpolation functions (Henrici, 1964) are used to compute the 
QUICKEST estimate for the right cell face concentration centered about cells i and i+1: 
 

where 
 
 x = the local right cell face position 
 Dx = diffusion coefficient 
 
Defining a local coordinate system of three non-uniformly spaced grid cells denoted by xi-1, xi, and 
xi+1 with corresponding constituent values, the interpolation functions required in equation (A-27) 
are: 
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and 

Taking the first derivative of P1(x) and the second derivative of P2(x) and substituting into 
equation (A-27), it is then possible to group terms and obtain the advective multipliers.  For 
example, the Ti+1 multiplier is: 
 

 
Similar functions are obtained for Ti and Ti-1 multipliers which completes the formulation for the 
QUICKEST algorithm. 
 
From a computational standpoint, most geometric components of the multipliers are time-invariant 
and are computed once and stored in arrays.  The time-varying part of the multipliers (U, ∆t, Dx) 
are updated each timestep during computation of the T arrays.  However, when the QUICKEST 
scheme is applied vertically, the spatial part of the multipliers for layers KT and KT+1 are updated 
each timestep to accommodate the surface elevation fluctuation. 
 
ULTIMATE QUICKEST Scheme 
 
[To be added] 
 
Vertical Implicit Transport.  Focusing on vertical advective and diffusive transport, constit-
uent transport can be written: 

where RHS represents horizontal transport, and all sources/sinks.  Integrating the transport 
equation vertically and over time yields: 
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where 
 
 Φ* = all n-time level horizontal and explicit vertical transport and sources/sinks 
 θ = time-weighting for vertical advection, 0 if fully explicit, 0.55 if Crank-Nicholson, 

and 1 if fully implicit 
 
Expanding the differential operators in terms of central differences and collecting terms, equation 
(A-10) can be recast as: 
 

where  

The coefficients are computed once, stored in arrays, and used to update each constituent.  This is 
accomplished by loading the explicit part of the solution, Φ*, with each successive constituent and 
inverting the resulting matrix via a Thomas tridiagonal solver.  
 

Auxiliary Functions 
 
Auxiliary functions are relationships that describe processes independent of basic hydrodynamic 
and transport computational schemes in the model.  Auxiliary functions include turbulent 
dispersion and wind shear processes, heat exchange (including ice cover), evaporation, density 
function, and selective withdrawal. 
 
 
Shear Stress at Water Surface 
 
The shear stress at the water surface is defined as  

( ) ( )τ ρ ρs D a h s D a hC W u C W= − ≅
2 2

 
where  τs: surface shear stress at water surface 
 us: surface velocity in water 
 Wh: wind velocity measured at a distance h above water surface in direction of shear 
 CD: drag coefficient 
 ρa: air density 
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x

z

W(z)

h
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Note that this relationship leads to the “3% rule” for surface currents: 

( )τ ρ ρs D a h s D W s D D s hC W u C u C C u W= − =






2 2 0 03
air water

air water
3% rule

  if    then  
1 244 344 124 34 1 24 34~ , ~ .  

 
Usually the drag coefficient is a function of the measurement height, h, above the water surface. 
Most drag coefficient formulae have been determined based on a 10 m wind speed measurement 
height. If wind speeds are taken at other measurement heights, for the shear stress calculation, 
these should be corrected to 10 m.  
 
The windspeed is a function of measurement height. To correct the measurement height to an 
elevation z, use the following approach: 
 
Assuming a logarithmic boundary layer: 
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z
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where Wz: desired wind speed at elevation z  
 Wz1: known wind speed at height z1 
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z0: wind roughness height (assume 0.003 ft for wind < 5 mph and 0.015 for wind > 5 mph, 
range 0.0005 to 0.03 ft) 

 
 
 
This term can then be used to compute the surface stress in the direction of the x-axis and the 
cross-shear (the cross-shear term will be used in the turbulent shear stress algorithm) as follows: 
 
 

τ ρwx D a hC W≅ −2
1 2cos( )Θ Θ  

τ ρwy D a hC W≅ −2
1 2sin( )Θ Θ  

 
 
 
where τwx: surface shear stress along x-axis due to wind 
 τwy: surface shear stress along lateral direction due to wind 
 Θ1: wind orientation relative to North, radians 

Θ2: segment orientation relative to North, radians 

North

W2 Segments

Θ2

Θ2

Θ2

n-1

n

n+1

Segments oriented from
east to west have an angle of 
π/2

 
 
 



AUXILIARY FUNCTIONS 

 

 

 

Appendix  A53

North

Θ1

Wh

Hence, a wind from the N would have an
angle of 0, a wind from east to west would be π/2.  

 
 
The drag coefficient, CD, is defined in CE-QUAL-W2 as (note that these formulae were 
determined based on a 10 m measurement height): 
 
For Wh<1 m/s, CD = 0.0 
For 1≤ Wh<15 m/s, CD = 0.0005(Wh)0.5 
For Wh≥ 15 m/s, CD = 0.0026 
 
Also, a fetch correction to the wind velocity can be used as determined by Fang and Stefan (1994). 
This correction is described in Appendix B under Dissolved Oxygen but is not applicable to rivers. 
 
 
Shear Stress at Bottom Boundaries 
 
The shear stress is defined along the bottom of each cell (or for each cell in contact with side walls 
or channel bottom) as  
 

τ
ρ

b
w g

C
U U= 2   

 
where  C is the Chezy friction coefficient 
 U is the longitudinal velocity  
 ρw is the density of water 
 
Also, the model user can specify a Manning’s friction factor where the Chezy coefficient is related 
to the Manning’s friction factor as 
 
C (for SI units only)= (1/n)R1/6 

where  n: Manning’s friction factor 
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 R: hydraulic radius 

 

In Version 2 of CE-QUAL-W2, the bottom shear stress was applied only to the bottom of each 
layer. In the Version 3 model, the side-wall friction is accounted for because of its greater 
importance in river systems.  

The user can input either the Chezy of the Manning’s coefficient for each model segment (whereas 
in Version 2 one could only specify one value for the entire system). 

 
Algorithm for τxz 
 
The algorithm for the vertical shear stress is  
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In Version 3, the user must specify which algorithm to use for Az or νt . The algorithms are shown 
below in Table 2. 
 

Table 2. Vertical eddy viscosity, νt, formulations used with the Version 3 
model. 
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Formulation Formula  Reference 
RNG (re-
normaliza-
tion group) 
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Simoes (1998) 

where lm: mixing length, z: vertical coordiante, H: depth, u: horizontal velocity, Ri: Richardson number, 
C: constant (assumed 0.15), u*: shear velocity, κ von Karman constant, τwy: cross-shear from wind, k: 
wave number, ρ: liquid density, ∆zmax: maximum vertical grid spacing, Ψ(x)=max(0,x), ν: molecular 
viscosity, C1: empirical constant (assumed 100) 
 
The model user can also specify the value of AZMAX (the maximum value of the vertical eddy 
viscosity), but this value is only used with the W2N and W2 formulations. This value is specified 
because the time step for numerical stability is greatly reduced when solving the momentum 
equations using an explicit numerical technique. Also, the model user can choose whether to 
compute the vertical momentum transfer with the longitudinal momentum equation using an 
implicit (IMP) or an explicit (EXP) numerical technique. The explicit formulation was used in CE-
QUAL-W2 Version 2 with a fixed AZMAX of 1.0E-5 m2/s. The implicit solution code was 
originally developed by Chapman and Cole and revised for Version 3. 
 
Note that only the W2 and W2N include the effects of cross-shear from wind and from tributary or 
branch inflows. Hence, it is recommended to use either W2 or W2N for waterbodies with deep 
sections that could be stratified. The other formulations should be used for estuary or river systems 
where the maximum computed AZMAX could be as high as 1 to 5 m2/s. For the river model, the 
model user should use the IMP solution technique. To reproduce results from Version 2 in a 
stratified reservoir, set AZMAX to 1E-5 m2/s and the calculation technique to EXP using the W2 
model. 
 
How does know which turbulent closure scheme to use for τxz since according to Hamblin and 
Salmon (1975) "the vertical diffusion of momentum is probably the most important internal 
parameter" for predicting internal circulation patterns? Because of the "disarray in the literature" 
over which formulation is best, Shanahan (1980) suggetsed that we  "use theory and literature as a 
guide to develop alternative viscosity functions and then test those functions in calibration runs 
against field data." In the absence of expensive-to-obtain current velocity data, the use of 
temperature profiles is often used to test the adequacy of the hydrodynamic regime against 
different formulations. 
 
Typical variation of these formulations, as predicted with the CE-QUAL-W2 model, is shown in 
Figure 28 for Manning's fiction factor and in Figure 29 for Chezy friction factor for an open-
channel, non-stratified flow regime. Comparison of the various turbulence closure theories to 
classical open channel flow theory for 7 vertical layers is shown in Figure 30. 
 
The next sections cover the background of the various expressions for Az. 
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Manning's n=0.03, S=0.0001

70

72

74

76

78

80

82

84

86

0 0.05 0.1 0.15 0.2 0.25

Turbulent eddy viscosity, m2/s

PARAB

RNG

W2

W2N

NICK

 
Figure 28. Variation of turbulent vertical eddy viscosity for flow of 2574 m3/s 
flow down a channel of length 30 km with a slope of 0.0001 and width of 100 
m at x=15 km and Manning's n=0.03. 
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Figure 29. Variation of turbulent vertical eddy viscosity for flow of 2574 m3/s 
flow down a channel of length 30 km with a slope of 0.0001 and width of 100 
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m measured at x=15 km and Chezy C=50. 

7 vertical layers, Manning's n=0.03 S=0.0001
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Figure 30. Comparison of vertical velocity predictions of W2 model with 
various eddy viscosity models compared to theory. 

W2 Model 
 
In CE-QUAL-W2, this shear stress term includes also the contribution to the shear stress from 
surface waves induced by the wind. The wind can produce waves that produce decaying motions 
with depth as shown below.  
 

wind stress
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The total longitudinal shear stress for a layer is defined in W2 as having contributions from 
interfacial velocity shear, wind wave generated shear, and friction shear along boundaries: 
 
 
τ
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where τwx is the longitudinal wind shear at the surface (see above) 

k=  wave number = 
4 2

2

π
gTw

 

Tw= wind wave period (empirical) = 6 95 2 0 233 0 534. . .E F W−  

F= fetch length, m. 
 
Determination of A  z 
 
The turbulent eddy viscosity was conceptualized by Prandtl as  
 

νturbulent

dU
dz

= l2  

 
where l is defined as the mixing length and can be interpreted as being proportional to the average 
size of large eddies or the length scale of a turbulent eddy. This length is a function of distance 
from a boundary or wall since the eddy sizes vary as a function of distance from a boundary. The 
goal in most turbulence models is the determination of the mixing length as a function of position 
in the fluid.  
 
Because the above concept is not firmly grounded in theory, there have been many published 
formulations (many widely varying) for determination of Az in the literature (see for example, 
Shanahan and Harleman, 1982). 
 
In the formulation in CE-QUAL-W2, the mechanism for transporting the wind stress on the 
surface is based on  
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  κ is the von Karman constant = 0.4 

C is an empirical constant taken as 1.5 

l, a vertical length scale, is chosen as vertical cell thickness. 
 
Hence, this formulation is a typical mixing length formulation that is decreased or increased based 
on the Richardson number. The Richardson number accounts for the impact of density 
stratification on transfer of momentum between fluid parcels. In regions where there is no 
stratification, Ri=0, and the exponential term is 1. For regions where there is strong stratification 

(or as 
d
dz
ρ

→ ∞ ), the Richardson number becomes large and the exponential term approaches 0.  

 
The term in the above formulation involving the lateral velocity because even winds blowing at 
right angles to the model cell may not cause any longitudinal velocity, but they will create a 
mechanism for increasing the transfer of stress vertically in the fluid.  
 
In the longitudinal-vertical model, the lateral velocity, V, and its gradient, ∂V/∂z, are due to the 
lateral component of wind wave motion and are assumed to be zero when averaged laterally, but 
not necessarily the square (∂V/∂z)2.  It is assumed that cross wind shear τwy generates lateral wave 
components and decays exponentially with depth, z,  such that  
 
τyz=τwy exp(-2kz) 
 
where τwy is the lateral wind shear at the surface (see above). 
 
Then using  
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The lateral velocity gradient squared becomes 
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The final equation for the vertical eddy viscosity is then  
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The above equation is implicit. In the model, this equation is explicit since the value of Az in the 
lateral wind shear term is used from the previous time step. Az is never less than the molecular 
kinematic viscosity for water.  
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RNG Turbulent Eddy Viscosity Model  
 
The RNG model was derived from the RNG model of Yakhot and Orszag (1986) by Simoes 
(1998). The turbulent eddy viscosity is derived from Yakhot and Orzag (1986) as  
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where Ψ(x)=max(0,x) 
ν: molecular viscosity 
νt: turbulent eddy viscosity 

ml
: mixing length 

ε: turbulent energy dissipation rate 
a′ : constant approximately 1 
C1: constant approximately 100 
 
Two additional equations are necessary to determine the mixing length and the turbulent energy 
dissipation. These are 
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Where κ is von Karman’s constant (=0.41) 
 
Substituting these into the equation for νt,  
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Simoes (1998) states that this model better represents experimental data than the more traditional 
parabolic eddy viscosity model of  
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A value of ν was derived for this project as a function of temperature. Based on values from 
Batchelor (1966), a polynomial curve fit between 0 and 30oC as shown in Figure 31. 
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This model was adjusted by the author to account for stratified flow conditions by using the same 
Richardson number criteria as used in the original W2 model (the approach of Mamayev as quoted 
in French, 1985), i.e., 

( )CRi
tRNGt e−= ννν ,max
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C is an empirical constant taken as 1.5 (Note that French, 1985, shows that this constant has been 
used as 0.4 also.) 
 
The Richardson number accounts for the impact of density stratification on transfer of momentum 
between fluid parcels. In regions where there is no stratification, Ri=0, and the exponential term is 

1. For regions where there is strong stratification (or as 

d
dz
ρ

→ ∞
), the Richardson number 

becomes large and the exponential term approaches 0.  
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Fit Results

Fit 4:  Log, Y=B*log(X)+A
Equation:
Y = -37.3877 * log(X) + -495.691
Number of data points used = 5
Average log(X) = -13.6059
Average Y = 13
Regression sum of squares = 577.303
Residual sum of squares = 2.69662
Coef of determination, R-squared = 0.995351
Residual mean square, sigma-hat-sq'd = 0.898872

Fit 5:  Log, Y=B*log(X)+A
Equation:
Y = -57.7621 * log(X) + -782.19
Number of data points used = 2
Average log(X) = -14.3206
Average Y = 45
Regression sum of squares = 50
Residual sum of squares = 1.55389E-010
Coef of determination, R-squared = 1

 
Figure 31. Variation of molecular viscosity with temperature. 

 

Nikuradse Model 
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This model, as noted in Rodi (1993), is a mixing length model where the mixing length lm and 
eddy viscosity νt were determined from 
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This results in a vertical distribution for the mixing length as shown in Figure 32. 
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Figure 32. Mixing length as a function of depth for the Nikuradse 
formulation. 

 
The stability of the water column affects the mixing length. A Richardson number criteria has 
been applied to correct the mixing length for stability effects such as 
 

( ) 071 ≥−= RiifRimom ll
  

( ) 0141 25.0 <−= − RiifRimom ll
 

 
This is a little different from the approach of Munk and Anderson (1948) where the Richardson 
number correction was applied to the value of Az, not the mixing length directly. 
 
In order to be compatible with the original formulation in W2, the computed value of Az was 
corrected using the Mamayev formulation, i.e., 
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( )CRi
tNICKt e−= ννν ,max

 
 
 

Parabolic Model 
 
Another distribution is the parabolic distribution of Az (Engelund, 1978) such as  
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Figure 33 shows the spatial distribution of Az for the parabolic model. 
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Figure 33. Variation of Az with depth for the parabolic model of Englund 
(1976). 

 
In order to be compatible with the original formulation in W2, the computed value of Az was 
corrected also using the Mamayev formulation: 
 

( )CRi
tPARABt e−= ννν ,max
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W2N Model 
 
The W2N model is the above W2 model, except that the mixing length is no longer the thickness 
of the vertical layer, but is computed using Nickaradse' model for mixing length. Hence, the final 
equations for the W2N formulation are 
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Effect on Number of Vertical Layers on Model Hydraulic Predictions 
 
In contrast to other riverine models that assume vertically well-mixed systems, the Version 3 
model accounts for the vertical variation of velocity in a riverine reach. Even though there is an 
added computational burden of computing the 2-D velocity profile, the advantage of making this 
computation is that the friction factor (Manning's or Chezy) for a segment can be flow or stage 
invariant depending on the number of vertical layers schematized.   

 
Many one-dimensional hydraulic flow models, such as CE-QUAL-RIV1 and UNET (Barkau, 
1997), allow the model user to specify how Manning’s friction factor changes with depth. The 
Mannning’s friction factor, n, has been thought to vary as a function of depth, Reynolds number, 
roughness factor (or scale of bed grain size) (Ugarte and Madrid, 1994; Soong, DePue, and 
Anderson, 1995). Some of these formulations for variation of Manning's friction factor with 
hydraulic radius, R, are shown below Figure 34 and in the equations below: 
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where S is the channel slope and d84 is the 84-th pecentile diameter of the bed material. 
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Figure 34. Variation of Manning's friction factor using formulae from 
Limerinos (1970) and Jarrett (1984) for S=0.0005 and d84=50. 
 
Researchers understand that the friction factor, when representing a hydraulic element with 
uniform roughness, should be flow invariant with depth (Henderson 1966). But many assert that 
the friction factor changes with depth because the friction coefficient is variable with the wetted 
perimeter. Some reason that it is to be expected that at shallow depths the larger size of the bed 
material produces a higher overall friction factor than a deeper flow where the side walls may have 
a smaller friction.  
 
Since most researchers used 1-D cross-sectionally averaged flow equations (such as Manning’s 
Equation, or 1-D dynamic hydraulic models), this parameterization itself has been responsible for 
the seeming variation of Manning’s friction factor with depth. For example, all one-dimensional 
hydraulic models implicitly assume that the rate of transfer of momentum from the bottom of the 
channel to the top is infinite. For these hydraulic models, even as the depth of the channel 
increases, these models still assume an infinite rate of transfer of momentum from the channel 
bottom to the surface. Hence, as the water depth increases, the apparent friction factor must be 
reduced because of the assumption of infinite momentum transfer between the bed and the water 
surface. 
 
But, in a 2-D (vertical-longitudinal) river model, the Manning's friction factor does not have to be 
varied with stage in order to produce the effect that as the river stage increases, the apparent 
friction decreases. The water surface set-up changes significantly as the layer numbers increase. In 
general, the water surface slope increases as the number of computational layers decreases. In 
other words, the average eddy viscosity in the water column increases as the number of layers 
decrease until at the limit of a one-layer system, the average vertical eddy viscosity is infinite. The 
fact that the Manning’s friction factor seems to decrease with depth in 1-D models is accounted for 
in modeling the river channel as a 2-D (vertical-longitudinal) system. 
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CE-QUAL-W2 Version 3 uses five different vertical eddy viscosity formulations. These 
formulations were shown earlier in Table 2.  
 
Typical variation of these formulations, as predicted with the CE-QUAL-W2 model, was shown in 
Figure 30 for Manning's fiction factor for an open-channel, non-stratified flow regime as 
compared to theory of steady uniform channel flow.  
 
The number of vertical layers significantly affected the model predictions. For example, Figure 35 
shows a comparison of vertical velocity profiles from a model with 1, 3 and 7 vertical layers using 
the PARAB eddy viscosity model.  
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Figure 35. Comparison of vertical velocity predictions of W2 model with 1, 3 
and 7 vertical layers 
 
Figure 36 shows how the change in the number of vertical layers affects the water surface slope 
over the domain length for a steady-state flow. In order to model the water surface slope of the 1-
layer model with the 7-layer model, the apparent value of Manning's friction factor would have to 
be reduced. Hence, the apparent friction decreases as the number of layers increase. 
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CE-QUAL-W2 V3 was also compared to the 1-D models DYNHYD (Ambrose et al., 1988) and 
CE-QUAL-RIV1 (Environmental Laboratory, 1995) by running W2 with only a single vertical 
layer. 
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Figure 36. Comparison of elevation drop of W2 model with 1, 3 and 7 vertical 
layers with same Manning's friction factor. 

 
The average velocities between the 3 models agreed well with theory but the water surface slopes 
were different. The W2 model predicted an elevation difference of 2.93 m, compared to 2.07 m for 
DYNHYD and 2.05 m for RIV1 over 30 km for a Q=2574 m3/s, n=0.03, S=0.001, and channel 
width=100 m. Based on classical steady-state theory, the actual difference should have been 2.9 
m. Both the DYNHYD and RIV1 models required friction factors greater than expected to 
correspond to classical theory. This may have been a result of these models not incorporating side-
wall friction which was important during these test runs where the depth was 15 m and the width 
was 100 m. 
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Algorithm for τxx 
 
The longitudinal turbulent shear stress is defined as 
 
τ
ρ

ν
∂
∂

∂
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xx
turbulent x

U
x

A
U
x

= =  

 
where  Ax =νturbulent and is the longitudinal turbulent viscosity or the longitudinal eddy viscosity. 
Ax is a user-defined constant in the model.  
 
This turbulence closure approximation is termed a zero-order closure model since no further 
equations are necessary to solve for the transmission of shear stress within the fluid. 
 
This term is usually of very low magnitude except in areas near boundaries, like at the face of a 
dam where the longitudinal velocity goes to zero. 
 
Internal hydraulic structures algorithm (pipes, culverts) 
 
The model user can now specify a pipe or culvert between model segments. This model is based 
on work performed by Berger and Wells (1999). The Version 3 W2 model has a 1-D, unsteady 
hydraulic submodel that computes the flow between the 2 linked segments.  The model computes 
the selective withdrawal (see section on selective withdrawal) from the upstream segment, and the 
model user specifies whether the inflow to the downstream segment is treated as mixed over the 
depth, inflow depth determined from inflow density, or specified between an upper and lower 
elevation (see section on inflows). The flow between an upstream segment and a downstream 
segment is shown in Figure 38. 
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Figure 37. Schematic of linkage of model segments with a culvert. 
 
This model is only appropriate for simple piping systems that are not suddenly under a large 
hydraulic head. The governing equations for computing the flow and the numerical solution 
technique are shown are shown below. 
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The governing equations used to predict flow through culverts were the one-dimensional time-
dependent conservation of momentum and continuity equations (Yen, 1973). 
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where 
u - velocity 
t - time 
h – piezometric head 
g - gravitational acceleration 
x - distance along axis of culvert 
A - cross-sectional area of culvert filled with water 
T  - width of water level surface 
φ - angle between culvert axis and horizontal 

So - culvert slope 

S f - friction slope. 

mS - minor loss slope 
 
The friction slope S f was estimated with the Manning formula 
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n - Mannings roughness factor 
R - hydraulic radius. 
 
Minor losses due to entrance configuration, gates, valves, and corners were accounted for in the 
minor loss term mS where 

 
Lg

uu
kS m

1
2

=  

and 
 
k - sum of minor loss coefficients 
L - length. 
 
Pressurized or full culvert flow was modeled assuming a fictitious water surface width called a 
Preissmann slot (Yen, 1986).  If the culvert was full, the surface width T was zero and the 
governing equations became singular. Using a Preissmann slot avoided having to switch between 
the open channel and pressurized flow equations.  The slot must be narrow enough to minimize 
error in the mass and momentum balance but large enough to maintain numerical stability when 
solving the open channel St. Venant equations.  A top width of 0.5% of the diameter was assumed 
for culverts flowing full. 
 
The advantages of using a Preissmann slot were quoted in Yen (1986): 
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(a) It uses only Saint-Venant equations and avoids switching between the surcharge equation 
and open-channel flow equations and avoids the associated separate treatment of the 
boundary conditions. 

(b) There is no need to define surcharge criteria 
(c) It is not necessary to keep inventory of the pipes that are surcharged at different times. 
(d) It permits the flow transition to progress computationally reach by reach in a sewer, as in 

the open-channel case, and hence it can account for the situation when only part of the 
length of the pipe is full. 

(e) It requires few additional assumptions than the standard approach to achieve numerical 
stability 

(f) It is simpler in programming. 
 
along with the some potential disadvantages: 
 

(a) It introduces a potential accuracy problem in the mass and momentum balance of the 
flow if the slot is too wide, and stability problems if it is too narrow. 

(b) It sill requires computation of two equations (continuity and momentum) for each of the 
reaches of the sewer when the sewer is full surcharged, whereas in the standard 
surcharge computation only one equation is applied to the entire length of the sewer 

(c) It is hypothetical rather than real. 
 
The Preissmann slot concept has been applied to other models for surcharged flow including the 
model described by Abbot (1982) and SWMM EXTRAN (Roesner et al. 1988).  
 
The boundary condition used for solving the governing equations was the head or water level at 
each end of the culvert.  However, if the water level at the downstream end of the culvert was less 
than the critical depth, the critical depth was used.  Momentum was not transferred between CE-
QUAL-W2 model segments and the culverts.  Initial conditions were the calculated velocities and 
heads of the previous time step. 
 
The governing equations cannot be solved analytically and an implicit finite difference scheme 
was used to approximate the solution.  The solution method employed the “leap-frog scheme” 
which calculates the head and velocity at alternating computational nodes.  The finite difference 
forms of the continuity and momentum equations were 
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where the n-index references time step and the j subscript references the spatial node. 
 
Figure 38 compares flow predictions using the dynamic culvert model with flow data taken within 
a culvert at NE 47th bridge in the Upper Columbia Slough, Portland, Oregon.   Data was recorded 
by a flow meter (Flow-Tote) placed directly in a culvert.   The cyclical flows are the result of 
turning pumps on and off at MCDD#1, a downstream pump station. The culvert was calibrated by 
adjusting the minor loss parameter. 



AUXILIARY FUNCTIONS 

 

 

 

Appendix  A71

270 272 274 276 278 280 282 284 286 288 290
Julian Day

0

10

20

30

40
Fl

ow
 (c

fs
)

dynamic model predictions
data

9/29/94 10/3/94 10/7/94 10/11/94 10/15/94

0

0.2

0.4

0.6

0.8

1

Flow
 (cm

s)

 
Figure 38.  Comparison of model predictions and data using dynamic culvert model.  The flow 
cycling was due to turning pumps on and off at MCDD#1.  The culvert being simulated is located 
along the southern arm of the slough at NE 47th. 
 
Culvert input parameters required by the model were diameter, length, invert elevations, Mannings 
friction coefficient, and a minor loss coefficient.  
 
Internal Weirs 
 
The Version 3 model can be used to set internal weirs at specified cell locations. The user specifies 
the location of the internal weir by providing a segment and layer number. The weir effectively 
acts as a barrier to flow and diffusion of mass/heat across the width of the waterbody as shown in 
Figure 39. This can be used to simulate submerged curtain weirs within a stratified reservoir. Note 
that in specifying the internal weir, the right hand face of the segment/layer specified is the barrier 
to flow and diffusion. 
 
Water Level Control 
 
Many times, outflows in reservoirs are controlled by water levels. In order to facilitate 
management of the water body, a water level control algorithm was added to the code. Essentially, 
this is a pump based on a float position controller. 
 
This allows the model user to specify the upstream and downstream (if any) segment for water to 
be transferred at a given flow rate based on the water level at the upstream segment. Reverse flow 
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is not allowed through this system. The withdrawal is treated as a lateral selective withdrawal and 
the segment that receives the inflow is treated as a tributary. 

Segment #
Layer #

Internal weir
(on right side of segment)

Dam

Outflow

 

Figure 39. Schematic of specification of an internal weir. 

 
External hydraulic structures algorithms (spillways, weirs, tainter gates) 
 
CE-QUAL-W2 Version 3 also has the capability to predict outflow from a dam or hydraulic 
structure that contains a weir or spillway as shown in Figure 40. In Version 2 of CE-QUAL-W2, 
the model user had to specify all known flow rates from a dam in an outflow file. The Version 2 
model was unable to predict flow through a hydraulic structure. Version 3 can either used 
specified outflows (as in Version 2), or can have the model automatically compute the flows based 
on user-supplied rating curves. 
 
This section will review how other models have developed algorithms for incorporating weirs and 
spillways, review the theory of weir flow, and show the algorithm implemented in CE-QUAL-W2 
Version 3. 
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Figure 40. Tainter gate and spillway flow. 
 
The UNET model (HEC, 1997a), a one-dimensional unsteady hydraulic model,  formally accounts 
for spillway flow from weirs and spillways. For free or submerged flow from a spillway with a 
tainter gate, UNET uses a general equation such as 
 

ηβα HBCWAQspillway =  

 
where Qspillway is the flow rate, A is the trunnion height, B is the gate opening, C is an empirical 
coefficient, W is the gate width, spdu ZKKZZH )1( −−−= , Zu is the headwater 

elevation, Zd is the tailwater elevation, K=1 for submerged flow and 0 for free flow, Zsp is the 
spillway elevation and α, β, and η are empirical coefficients. This equation was developed based 
on rating curves for hydraulic control structures in Arizona. Submergence was defined whenever  
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Weir flow was computed (and when the gate no longer controlled the flow which was assumed to 
occur whenever B=0.8H) as  
 

( ) 2/1)1( HZKZZKFWCQ spduwweir −+−=  

 

Tainter gate Spillway/weir 
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where Cw is the weir coefficient, [ ]
[ ]
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 when K=1; and F=1 when K=0. For a 

concrete spillway HEC (1997a) suggests using a value of Cw of 4. Note that the above 2 equations 
are considered equivalent whenever B=0.8H. 
 
The steady-one-dimensional steady-state hydraulic model, HEC-RAS (HEC, 1997b), includes the 
capability to model the flow over spillways, including gated spillways (tainter gates and sluice 
gates), broad-crested weirs, or an ogee crest. Ineffective flow area is used to block a part of the 
channel until it reaches the level of a spillway or weir. 
 
A summary of the equations used by HEC-RAS as well as explanations are shown in Table 3. 
 

Table 3. HEC-RAS (HEC, 1997b) flow rates through weirs and sluice gates. 
Condition Equation Description 
Radial flow 
gate, flowing 
freely 

HEBETE HBWTgCQ 2=  When the upstream water surface is ≥ 1.25 times the 
gate opening height (above the spillway crest), Q is the 
flow in cfs, C is discharge coefficient (between 0.6 and 
0.8), W is the width of the gated spillway in ft, T is the 
trunnion height (from spillway crest to trunnion pivot 
point) in ft, B height of gate opening in ft, H is the 
upstream energy head above spillway crest Zu-Zsp, Zu is 
the elevation of the upstream energy grade line, Zd is 
the downstream water surface, Zsp is the elevation of 
the spillway crest, TE is an empirical trunnion height 
exponent (0.16), BE is the gate opening coefficient 
(0.72) and HE is the head exponent (0.62).  

radial gate 
flowing under 
submerged 
conditions 

HEBETE HBWTgCQ 23=
 

When the upstream water surface is ≥ 1.25 times the 
gate opening height (above the spillway crest), 
whenever the tailwater depth divided by the energy 
depth above the spillway is greater than 0.67, H is now 
defined as Zu-Zd 

freely flowing 
sluice gate WBgHCQ 2=  When the upstream water surface is ≥ 1.25 times the 

gate opening height (above the spillway crest), H is the 
upstream energy head above the spillway = Zu-Zsp, and 
C is a discharge coefficient (0.5 to 0.7) 

submerged 
sluice gate WBgHCQ 23=  When the upstream water surface is ≥ 1.25 times the 

gate opening height (above the spillway crest), 
whenever the tailwater depth divided by the energy 
depth above the spillway is greater than 0.67, H is Zu-
Zd 

Low flow 
through gated 
structure 

2/3CLHQ =  When upstream water level is equal to or less than the 
top of the gate opening, weir flow equation is used, C 
is the weir coefficient and ranges from 2.6 to 4.0 
depending on broad crested or Ogee spillway, length of 
spillway crest, H is the upstream energy head above the 
spillway crest, for an Ogee spillway the value of C is 
adjusted according to a 1977 Bureau of Reclamation 
study on variability of C for Ogee spillways, suggested 
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Condition Equation Description 
values of C are 2.6 for bridge decks and 3.0 for flow 
over elevated roadways 

 

 Flow over Weirs 
 
Analysis of flow over weirs has been studied extensively. Martin and McCutcheon (1999) show 
that a typical relationship between the pool depth and flow over a weir is 
 

η
wce hWCQ =  

 
where Ce and η are empirical coefficients, Wc is the length of the weir crest and hw is the height of 
the pool above the weir crest. Theoretical calculations of steady-state flow over a weir can be 
complex depending on whether the weirs are sharp-crested, broad-crested, V-notched, rectangular, 
Cipolletti, parabolic, or some other type. Table 4 shows some examples from French (1985) and 
USBR (1999) on typical equations used for the different weir types. For many regular weir types, 
formulae exist for accurate estimation of the flow. But in most cases, a rating curve for a given 
installation is necessary beacuase of the uncertainty of end effects, flow alignments, shallowness 
in the upstream pool, and other unique features of the installation (Martin and McCutcheon, 1999). 

Table 4. List of weir types (after French, 1985, and USBR, 1999) 
Weir type Weir Equation Description 
Rectangular 
broad crested 
weir 

2/3
13

2
3
2

WhgCCQ vD=  Valid when 0.08 <H1/L<0.5 where H1 is the 
total head upstream of the weir (energy + 
static head) and L is the length of the weir 
block, W is the width of the rectangular weir 
from edge to edge, Cv varies from 1 to 1.2 and 
CD varies from 0.85 to 1.06 

Rectangular, 
sharp crested 
weir 

2/3
12

3
2

BhgCQ e=  Olson and Wright (1990) show that Ce 
depends on the approach velocity head, V2/2g 
and the contraction of streamlines just beyond 
the weir crest and show that Ce is of the form: 
Ce=0.611+0.075*(H/Z) where H is the weir 
head and Z is the weir crest head (as measured 
from the bottom of a channel); Clay (1995) 
suggests a simple equation of Q=3.33BH3/2 of 
this form when approach velocities are less 
than 1 fps or Q=3.33B[(H+h)3/2-hv

3/2] where 
hv=V2/2g and V is the approach velocity 

Parabolic, 
broad-crested 2

14
3 hfgCCQ vD=  

f is the distance from the bottom point of the 
weir to the weir focal point 

Parabolic, 
sharp-crested 

2
12

1
hfgCQ e π=   

Triangular, 
broad-crested 

2/5
1)5.0tan(

5
2

25
16

hgCCQ vD Θ=
 Theta is the angle of half of the triangular weir 
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Weir type Weir Equation Description 
Triangular, 
sharp-crested 

2/5
1)5.0tan(2

25
8

hgCQ e Θ=  Ce is a function of notch angle and varies from 
0.59 to 0.57 for angles between 20 and 100 
degrees 

Trapezoidal, 
broad-crested 

[ ] 2/1
1

2 )(2)( cccD yHgmyTyCQ −+=
 

T is the top width, m is the slope, yc is the 
water surface elevation at the weir, H1 is the 
energy head upstream of the spillway 

Trapezoidal, 
sharp-crested 

2/1
11 )5.0tan

5
4

(2
3
2

hhbgCQ e Θ+=

 

Theta is the angle of the trapezoid at a 
convergence point of the 2 sides 

Truncated 
triangular, 
broad-crested 

2/3
1 )5.0(

3
2

3
2

bvD HhTgCCQ −=

 

When H1 > 1.25Hb, otherwise use equation for 
broad crested triangular weir, Hb is the depth 
from the bottom of the truncated triangular 
weir to the top of the triangle and the 
beginning of the rectangular section 

Truncated 
triangular, 
sharp-crested 

))((2
15
4 5.2

1
5.2

1 b
b

e Hhh
H
T

gCQ −−=

 

When H1 > Hb, otherwise use equation for 
sharp crested triangular weir 

Cipoletti  2/3
12

3
2

WhgCCQ vD=  
A modification of the contracted, rectangular, 
sharp-crested weir with a trapezoidal control 
section and sides sloping outward with slopes 
of 4:1; CD≅0.63 and Cv varies from 1 to 1.2 
and is a function of CD and the ratio of area 
upstream of the control section and at the 
control section 

Proportional or 
sutro weir )

3
1

(2 1 ahgabCQ D −=  Where a is the height of the rectangular 
portion of the weir above the base, and b is the 
width of the bottom of the sutro weir, CD 
varies from 0.597 to 0.619 for symmetrical 
Sutro weir and between 0.625 and 0.603 for 
unsymmetrical Sutro weir 

 

CE-QUAL-W2 Version 3 Implementation 
 
Since all weirs in practice are calibrated and a head discharge relationship is usually determined, 
CE-QUAL-W2 accepts only the Q vs H relationship rather than an equation from Table 4. The 
model user then must analyze the weir or spillway and input a relationship based on the weir or 
spillway geometry. The model accepts equations in the form of a power function: 
 

1
1

βα hQ ∆=  for freely flowing conditions  

 
where α1, β1 are empirical parameters and ∆h is Zu-Zsp, Zu is the upstream head, and Zsp is the 
spillway crest elevation 
 
and 
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2
2

βα hQ ∆=  for submerged conditions  

 
where α2, β2 are empirical parameters and ∆h is Zu-Zd, Zu is the upstream head, and Zd is the 
downstream head. Submerged conditions are defined as whenever the tailwater depth over the 
upstream energy head (static head and velocity head) is greater than 0.67 (HEC, 1997b). Even 
though negative flow rates are possible using the second equation whenever Zd>Zu , these results 
should be used with caution since rarely are ratings curve done for reverse flow over a spillway. 
The model user needs to insure that there is a smooth transition between submerged flow 
conditions and free flowing conditions by proper choice of model coefficients. This means that 
calculations should be made to show that at the transition from free flowing to submerged flow 
conditions there is a relatively smooth flow transition. This is illustrated in Figure 41. 
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Figure 41. Flow rate over a spillway or weir for submerged and free flow 
conditions. 
These equations above are only for uncontrolled weirs without gates. 
 
For a gated structure or sluice gate, a more complex rating curve is required based on the opening 
of the gate or sluice and the head difference between the upstream and downstream condition (the 
spillway crest if free flow and the tailwater elevation if submerged flow). 
 
For a freely flowing condition, CE-QUAL-W2 uses the following equation: 
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11
1

γβα BhQ ∆=  

and  

22
2

γβα BhQ ∆=  

 
for a submerged condition, where α1, β1, γ1, α2, β2 , γ2 are empirical parameters and ∆h for the 
freely flowing condition is is Zu-Zsp, Zu is the upstream head, Zsp is the spillway crest elevation, 
and for the submerged condition is Zu-Zd, Zd is the downstream head, and B is the opening of the 
gate in m. In defining these parameters, the model user also has to generate a time-series file 
showing the opening of the gate(s) in m where a B of 0 m is closed. Whenever B is equal to or 
greater than 0.8∆h, a weir equation is used with no functional dependency on B. in this case, the 
model user also supplies a rating curve when the gates act like a weir. Figure 42 shows the flow 
rate dependence on the gate opening. 
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Figure 42. Variation of flow rate with gate opening. 
 
In some reservoir systems, a outlet valve is connected to the reservoir and a head-discharge 
relationship is used based on opening of the gate or number of turns of the gate. In this case the 
outlet level is usually at a different elevation than the withdrawal elevation. The above gate 
formulation can still be used if there will not be reverse flow through the needle valve. This 
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situation is illustrated in Figure 43. In this case, the elevation of the outflow is required in addition 
to the elevation at which the outflow is taken if a rating curve is used in the model. The use of this 
is described in the section on changes to the control file. W2 currently does not have the ability to 

decide the distribution of outflows if more than one selective withdrawal gate is open. 
 
 

Figure 43. Selective withdrawal with outflow connected to a valve with a 
gate. 
 
 
The model user can insert weirs and/or spillways, specify connectivity to other model segments, 
and insert the ratings curve parameters for each weir/spillway. The model treats each spillway or 
weir or gate as a selective withdrawal outflow and uses the selective withdrawal algorithm for 
determining water flow from each vertical layer adjacent to the structure. Inflows from hydraulic 
control structures are treated as tributary inflows where the user must specify whether the inflow is 
placed according to density, equally distributed between all vertical layers, or distributed between 
a given elevation range. 
 
If a valve rating curve is used as a "gate" and the outlet elevation to compute the head difference is 
not the same at the withdrawal elevation the following changes are made above. 
 
The section “GATE WEIR” present weir equations used when the gates are open and the open 
gate does not interfere with the flow and hence weir flow is assumed through the gates (when 

hB ∆≥ 8.0 ). 
 
 

Gate valve 

Selective 
withdrawal 

dam 
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Conservation of longitudinal momentum at branch intersections 
 
Version 3 allows the conservation of longitudinal momentum at branch intersections (see Figure 
44). The model user does not need to account for this explicitly since this is done automatically in 
the code. The vector component of velocity in the x-direction of the main channel, Ux, can be 
computed by analysis of the channel orientations. This component in the x-direction would be: 
Ux=Ucosβ where U is the longitudinal velocity of the tributary at the downstream segment that 
intersects the main branch and β is the difference in the angle between the main stem and tributary 
segments. 
 

θ2 main stem

θ2 tributary branch

x

x U Uy

Ux

N

 
 

Figure 44. Schematic of branch connection. 
 
The conservation of momentum about a control volume, the main stem segment, would result in 
an additional source of momentum. Lai (1986) shows that the correction to the x-momentum 
equation would be: 
 
qBU x  
where q is the lateral inflow per unit length.  
 
This arises from re-deriving the momentum equations and assuming that all the fluid (q) entering 
the segment is moving at the velocity Ux. This correction to the x-momentum equation would be  
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Increased vertical mixing from lateral inflows 
 
Wells (1997) proposed accounting for the cross-shear as a result of the y component of the 
velocity of a side branch in the computation of the vertical eddy viscosity (and as a result the 
vertical diffusivity). This was implemented by increasing the cross-shear velocity gradient. In W2 
Version 2 wind shear across the lateral axis of a segment also increased the vertical mixing by 
affecting the computation of Az. Analogous to the shear from wind, an additional  side shear was 
implemented in the calculation of Az, the vertical eddy diffusivity coefficient, in Version 3 as 
follows: 
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Ubranchy =Ubranchsin(Θmain-Θbranch)  
∆z is the layer height of the receiving segment's layer 
B is the layer width of the receiving segment's layer 
∆x is the longitudinal spacing of the cell in the main branch receiving the inflow 
Qtributaries is the flow rate of tributaries (assumed to be at right angles to the main channel). 
 
This side shear effect is only computed when the vertical mixing algorithm chosen by the user is 
W2 or W2N. 
 
 
Heat Budget 
 
Surface Heat Exchange.  Surface heat exchange can be formulated as a term by-term process 
using the explicit adjacent cell transport computation as long as the integration timestep is shorter 
than or equal to the frequency of the meteorological data.  Surface heat exchange processes 
depending on water surface temperatures are computed using previous timestep data and are 
therefore lagged from transport processes by the integration timestep. 
 
Term-by-term surface heat exchange is computed as: 
 

 
(A-46) 

where 
 
 Hn = the net rate of heat exchange across the water surface,  W m-2 
 Hs = incident short wave solar radiation,  W m-2 
 Ha = incident long wave radiation,  W m-2 
 Hsr = reflected short wave solar radiation,  W m-2 

n s a e c sr ar brH  =  H  +  H  +  H  +  H  -  ( H  +  H  +  H  )  
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 Har = reflected long wave radiation,  W m-2 
 Hbr = back radiation from the water surface,  W m-2 
 He = evaporative heat loss,  W m-2 
 Hc = heat conduction,  W m-2 
 
The short wave solar radiation is either measured directly or computed from sun angle 
relationships and cloud cover.  The long wave atmospheric radiation is computed from air 
temperature and cloud cover or air vapor pressure using Brunts formula.  The right-hand terms are 
all water surface temperature dependent. 
 
Water surface back radiation is computed as: 
 

where 
 E = emissivity of water,  0.97 
 σ* = Stephan-Boltzman constant,  5.67 x 10-8 W m-2 °K-4 
 Ts = water surface temperature,  °C 
 
Like the remaining terms, it is computed for each surface layer cell on each iteration timestep. 
 
Evaporative heat loss is computed as: 
 

where 
 
 f(W) = evaporative wind speed function,  W m-2 mm Hg-1 
 es = saturation vapor pressure at the water surface,  mm Hg 
 ea = atmospheric vapor pressure,  mm Hg 
 
Evaporative heat loss depends on air temperature and dew point temperature or relative humidity.  
Surface vapor pressure is computed from the surface temperature for each surface cell on each 
iteration. 
Surface heat conduction is computed as: 

where 
 
 Cc = Bowen's coefficient,  0.47 mm Hg °C-1 
 Ta = air temperature,  °C 
 
Short wave solar radiation penetrates the surface and decays exponentially with depth according to 
Bears Law: 
 

where 
 
 Hs(z) = short wave radiation at depth z,  W m-2 
 β = fraction absorbed at the water surface 

br
*

s
4H  =  (T  +   273.15)ε σ    (A-47) 

e s aH  =  f(W)   (e   -   e )     (A-48) 

c c s aH  =  C    f(W)   (T   -   T )    (A-49) 

s s
-  zH  (z)  =  (1  -   )   H   eβ η                (A-50) 
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 η = extinction coefficient,  m-1 
 Hs = short wave radiation reaching the surface,  W m-2 
 
Aside from the problems of measuring meteorological data relative to a large waterbody and 
especially the problem of translating climatological data from distant weather stations, the most 
uncertain parameter in the surface heat exchange computations is the evaporative wind speed 
function, f(W).  Various formulations of f(W) have been catalogued and examined in Edinger, et 
al. (1974).  Unlike the use of wind speed in wind shear relations as discussed in the previous 
section, evaporative wind speed is thought to be a "ventilation speed" rather than a vector velocity.  
The different formulations result from the empirical determination of f(W) for different size and 
shape waterbodies with data from different locations and averaged over different periods of time. 
 
Evaporation Models  
In CE-QUAL-W2 Version 3, the model user can choose different formulations for evaporation. 
The Version 3 model includes a user defined evaporation wind speed formula of the form 
 

cfw
zz Wbfw+afw=)Wf(  

 
where f(W) is in W/m2/mm Hg, afw, bfw, cfw are empirical constants, and Wz is the wind speed in 
m/s measured at a distance of z=2 m. This function is used in computing both evaporative water loss 
and evaporative heat loss. The default value is one suggested by Edinger et al. (1974)  
 
afw=9.2 
bfw=0.46 
cfw=2.0 
 
for a wind speed of 7 m. The Version 3 model assumes that the wind speed formulation is at a 2 m 
height. To convert bfw from any measurement height to a 2 m measuring height assuming that afw 
and cfw are the same, bfw at 2 m would be  
 

mz
cfw

m bfwbfw α=2  

 
where bfwz is bfw measured at z m and α is the conversion factor between the wind at z and the wind 
at 2 m using  

α
1

ln

2
ln

2 =
)

z
z(

)
z

(
=

W
W

0

0

z

m
  

where W2m: desired wind speed at elevation 2 m 
 Wz: known wind speed at height z 

z0: wind roughness height (assume 0.003 ft for wind < 5 mph and 0.015 for wind > 5 mph, 
range 0.0005 to 0.03 ft) 

 
An additional evaporation formulation has been input into the model: the Ryan-Harleman (1974) 
approach that is especially appropriate for heated effluents.  
 
This approach uses the form of  
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f(W )= a + bWz z   
where 
b = 14 Btu/ft2/day/mm Hg/mph or 3.2 W/m2/mb/m/s or in W2 units 4.26 W/m2/mm Hg/m/s   

a = ( T - T )sv av
1/ 3λ   

λ = 22.4 Btu/ft2/day/mm Hg/deg F-1/3 or 2.7 W/m2/mb/deg C-1/3 or in W2 units of 3.59 W/m2/mm 
Hg/deg C-1/3 

v
* -1T = T (1- 0.378[

e
p

] )   

Tv: virtual temperature (absolute units) 
p: total atmospheric pressure (in W2 this is assumed to be 760 mm Hg) 
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Note that the for the Lake Hefner Model: a=0 and b=17 Btu/ft2/day/mm Hg/mph or b=3.75 
W/m2/mb/m/s or in W2 units, b=4.99 W/m2/mm Hg/m/s. 
 
In the W2 implementation of the Ryan-Harleman equation, if the virtual temperature difference is 
negative or is less than that computed using the Lake Hefner model, f(W) reverts to the Lake Hefner 
evaporation model. Figure 45 shows a comparison of the Ryan-Harleman model compared to the W2 
default value. 
 
Adams et al. (1981) recommend that for natural lake surfaces that the Lake Hefner model (see Table 
5) be used. 
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Figure 45. Comparison of the wind speed formualtion for Ryan-Harleman 
and W2 default (for Tair=15C, Tdew=-5C, Tsurface=25C). 
 
Summaries of several evaporation formulations are shown below in Table 5 as adapted from Adams, 
et al. (1981). 
 

Table 5. Typical Evaporation Formulae for Lakes and Reservoirs (adapted 
from Adams et al. 1981) 

Name Time incre-
ments 

Water body ϕe, Formula at sea-level 
with wind corrected to 
a 2 m height, units 
BTU/ft2/day, W in 
mph, e, vapor pressure, 
in mm Hg 

f(W2) in units 
of W/m2/mm 
Hg, W in m/s 

Remarks 

Lake 
Hefner 

3 hrs and 
day 

Lake Hefner, 
OK, 2587 acres 

17.2W2(es-e2) 2.26W2 good agreement with 
lake data from 
several lakes in US 
and Russia 

Kohler day Lake Hefner 
OK, 2587 acres 

17.5W2(es-e2) 2.2995W2 essentially the same 
as Lake Hefner 
formula 

Zaykov - ponds and small 
reservoirs 

(1.3+14W2) (es-e2) 0.1708+ 
1.8396W2 

based on Russian 
work 

Meyer monthly small lakes and (80+10W2) (es-e2) 10.512+ ea obtained daily 
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Name Time incre-
ments 

Water body ϕe, Formula at sea-level 
with wind corrected to 
a 2 m height, units 
BTU/ft2/day, W in 
mph, e, vapor pressure, 
in mm Hg 

f(W2) in units 
of W/m2/mm 
Hg, W in m/s 

Remarks 

reservoirs 1.314W2 from mean morning 
and evening 
measurements of Ta 
and RH 

Morton monthly Class A pan (73.5+14.7W2)  
(es-e2) 

9.658+ 
1.9316W2 

data from 
meteorological 
stations, 
measurement heights 
assumed 

Rohwer daily pans, 85 ft dia 
tank, 1300 acre 
reservoir 

(67+10W2) (es-e2) 8.8+ 
1.314W2 

extensive pan 
measurements using 
different pans, 
correlated with tank 
and reservoir data 

* 0.1314*BTU/ft2/day=W/m2  and 7.5006151 mm Hg = 0.01 bar or 10 mb. 
 
 
Equilibrium Temperature Method 
Since certain of the terms in equation (A-46) are surface temperature dependent, and others are 
measurable or computable input variables, the most direct route is to define an equilibrium 
temperature, Te, as the temperature at which the net rate of surface heat exchange is zero.  
Equilibrium temperature is the fictitious water surface temperature at which incoming radiation 
heat rates are just balanced by outgoing water surface temperature dependent processes. 
 
Linearization of equation (A-46) along with the definition of equilibrium temperature allows 
expressing the net rate of surface heat exchange, Hn, as:  
 

where 
 
 Hn = rate of surface heat exchange, W m-2 
 Kaw = coefficient of surface heat exchange,  W m-2 °C-1 
 Tw = water surface temperature,  °C 
 Te = equilibrium temperature,  °C 
 
Seven separate heat exchange processes are summarized in the coefficient of surface heat 
exchange and equilibrium temperature.  The linearization used in obtaining equation (A-51) has 
been examined in detail by Brady, et al. (1968), and Edinger et al. (1974). 
 
The definition of the coefficient of surface heat exchange can be shown to be the first term of a 
Taylor series expansion by considering equation (A-51) as: 
where the derivative of Hn with respect to surface temperature is evaluated from equation (A-46) 

n aw w eH  =  - K  (T   -   T  )    (A-51) 

n
n

s
s eH  =  -   dH

dT
  ( T   -   T  )    (A-52) 
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to give Kaw, the coefficient of surface heat exchange.  All approximations of the individual surface 
heat exchange terms enter into the evaluation of the coefficient of surface heat exchange and the 
equilibrium temperature.  Equations (A-47) and (A-48) are defined from equation (A-46).  They 
have the same difficulties in evaluation as the individual terms in equation (A-46), but provide a 
simpler algebraic method for including surface heat exchange in temperature analyses. 
 
The mass evaporation rate is computed by dividing evaporative heat loss by the latent heat of 
evaporation of water.  Surface heat exchange always includes evaporative heat loss in the heat 
budget, but the user may choose to exclude it in the water budget.  For many reservoirs, inflow 
rates are determined from storage estimates that implicitly include evaporation. 
 
Sediment Heat Exchange.  Sediment heat exchange with water is generally small compared to 
surface heat exchange and many previous modelers have neglected it. Investigations on several 
reservoirs have shown the process must be included to accurately reproduce hypolimnetic 
temperatures primarily because of the reduction in numerical diffusion.  The formulation is similar 
to surface heat exchange: 
 

where 
 
 Hsw = rate of sediment/water heat exchange, W m-2 
 Ksw = coefficient of sediment/water heat exchange,  W m-2 °C-1 
 Tw = water temperature, °C 
 Ts = sediment temperature, °C 
 
Previous applications used a value of 7 x 10-8 W m-2 °C-1 for Ksw which is approximately 2 orders 
of magnitude smaller than the surface heat exchange coefficient.  Average yearly air temperature 
is a good estimate of Ts. 
 

Ice Cover 
 
Ice thickness and onset and loss of ice cover play an important role in the heat budget of northern 
waterbodies.  At high latitudes, ice cover may remain until late spring or early summer and 
prevent warming due to absorption of short wave solar radiation. 
 
The ice model is based on an ice cover with ice-to-air heat exchange, conduction through the ice, 
conduction between underlying water, and a "melt temperature" layer on the ice bottom (Ashton, 
1979).  The overall heat balance for the water-to-ice-to-air system is: 
 

where 
 ρi = density of ice,  kg m-3 
 Lf = latent heat of fusion of ice,  J kg-1 
 ∆h/∆t = change in ice thickness (h) with time (t),  m sec-1 
 hai = coefficient of ice-to-air heat exchange,  W m-2 °C-1 
 hwi = coefficient of water-to-ice heat exchange through the melt layer,  W m-2 C- 
 Ti = ice temperature,  °C 
 Tei = equilibrium temperature of ice-to-air heat exchange,  °C 

sw sw w sH  =  - K  (T   -   T  )    (A-53) 

i f ai i e wi w m  L   
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∆
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  (A-54) 
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 Tw = water temperature below ice,  °C 
 Tm = melt temperature,  0°C 
 
The ice-to-air coefficient of surface heat exchange, hai, and its equilibrium temperature, Tei, are 
computed the same as for surface heat exchange in Edinger, et al. (1974) because heat balance of 
the thin, ice surface water layer is the same as the net rate of surface heat exchange presented 
previously.  The coefficient of water-to-ice exchange, hwi, depends on turbulence and water 
movement under ice and their effect on melt layer thickness.  It is a function of water velocity for 
rivers but must be empirically adjusted for reservoirs. 
 
Ice temperature in the ice-heat balance is computed by equating the rate of surface heat transfer 
between ice and air to the rate of heat conduction through ice: 

where 
 
 ki = molecular heat conductivity of ice,  W m-1 °C-1 
 
When solved for ice temperature, Ti, and inserted in the overall ice-heat balance, the ice thickness 
relationship becomes: 

from which ice thickness can be computed for each longitudinal segment.  Heat from water to ice 
transferred by the last term is removed in the water temperature transport computations. 
 
Variations in the onset of ice cover and seasonal growth and melt over the waterbody depend on 
locations and temperatures of inflows and outflows, evaporative wind variations over the ice 
surface, and effects of water movement on the ice-to-water exchange coefficient.  Ice will often 
form in reservoir branches before forming in the main pool and remain longer due to these effects. 
 
A second, more detailed algorithm for computing ice growth and decay has been developed for the 
model.  The algorithm consists of a series of one-dimensional, quasi steady-state, thermodynamic 
calculations for each timestep.  It is similar to those of Maykut and Untersteiner (1971), Wake 
(1977) and Patterson and Hamblin (1988).  The detailed algorithm provides a more accurate repre-
sentation of the upper part of the ice temperature profile resulting in a more accurate calculation of 
ice surface temperature and rate of ice freezing and melting. 
 
The ice surface temperature, Ts, is iteratively computed at each timestep using the upper boundary 
condition as follows.  Assuming linear thermal gradients and using finite difference 
approximations, heat fluxes through the ice, qi, and at the ice-water interface, qiw, are computed.  
Ice thickness at time t, θ(t), is determined by ice melt at the air-ice interface, ∆θai, and ice growth 
and melt at the ice-water interface, ∆θiw.  The computational sequence of ice cover is presented 
below. 
 
Initial ice formation.  Formation of ice requires lowering the surface water temperature to the 
freezing point by normal surface heat exchange processes.  With further heat removal, ice begins 

ai i ei
i i mh   (T  -   T  )  =  

- k (T  -   T  )
h

   (A-55) 
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to form on the water surface.  This is indicated by a negative water surface temperature.  The 
negative water surface temperature is then converted to equivalent ice thickness and equivalent 
heat is added to the heat source and sink term for water.  The computation is done once for each 
segment beginning with the ice-free period: 

where 
 
 θ0 = thickness of initial ice formation during a timestep,  m 
 Twn = local temporary negative water temperature,  °C 
 h = layer thickness,  m 
 ρw = density of water,  kg m-3 
 Cpw

 = specific heat of water,  J kg-1 °C-1 

 ρi = density of ice,  kg m-3 
 Lf = latent heat of fusion,  J kg-1 
 
Upper air-ice interface flux boundary condition and ice surface temperature 
approximation:  The ice surface temperature, Ts, must be known to calculate the heat 
components, Hbr, He, Hc, and the thermal gradient in the ice since the components and gradient all 
are either explicitly or implicitly a function of Ts.  Except during the active thawing season when 
ice surface temperature is constant at 0 °C, Ts must be computed at each timestep using the upper 
boundary condition.  The approximate value for Ts is obtained by linearizing the ice thickness 
across the timestep and solving for Ts. 
where 

 
 Ki = thermal conductivity of ice,  W m-1 °C -1 
 Tf = freezing point temperature,  °C 
 n = time level 
 
 
Absorbed solar radiation by the water under the ice.  Although the amount of penetrated solar 
radiation is relatively small, it is an important component of the heat budget since it is the only 
heat source to the water column when ice is present and may contribute significantly to ice melting 
at the ice-water interface.  The amount of solar radiation absorbed by water under the ice cover 
may be expressed as: 
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where 
 
 Hps = solar radiation absorbed by water under ice cover,  W m-2 
 Hs = incident solar radiation,  W m-2 
 ALBi = ice albedo 
 βi = fraction of the incoming solar radiation absorbed in the ice surface 
 γi = ice extinction coefficient,  m-1 
 
Ice melt at the air-ice interface.  The solution for Ts holds as long as net surface heat 
exchange, Hn(Ts), remains negative corresponding to surface cooling, and surface melting cannot 
occur.  If Hn(Ts) becomes positive corresponding to a net gain of heat at the surface, qi must 
become negative and an equilibrium solution can only exist if Ts > Tf.  This situation is not 
possible as melting will occur at the surface before equilibrium is reached (Patterson and Hamblin, 
1988).  As a result of quasi-steady approximation, heat, which in reality is used to melt ice at the 
surface, is stored internally producing an unrealistic temperature profile.  Stored energy is used for 
melting at each timestep and since total energy input is the same, net error is small.  Stored energy 
used for melting ice is expressed as: 
 

where 
 
 Cpi = specific heat of ice,  J kg-1 °C-1 
 θa1 = ice melt at the air-ice interface,  m-1 
 
Formulation of lower ice-water interface flux boundary condition.  Both ice growth 
and melt may occur at the ice-water interface.  The interface temperature, Tf, is fixed by the water 
properties.  Flux of heat in the ice at the interface therefore depends on Tf and the surface 
temperature Ts through the heat flux qi.  Independently, heat flux from the water to ice, qiw, 
depends only on conditions beneath the ice.  An imbalance between these fluxes provides a mech-
anism for freezing or melting.  Thus, 
 

where 
 
 θiw = ice growth/melt at the ice-water interface 
 
The coefficient of water-to-ice exchange, Kwi, depends on turbulence and water movement under 
the ice and their effect on melt layer thickness.  It is known to be a function of water velocity for 
rivers and streams but must be empirically adjusted for reservoirs.  The heat flux at the ice-water 
interface is: 

where 
 
 Tw = water temperature in the uppermost layer under the ice,  °C 
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Finally, ice growth or melt at the ice-water interface is: 
 

 

Density 
 
Accurate hydrodynamic calculations require accurate water densities.  Water densities are affected 
by variations in temperature and solids concentrations given by : 
 

 where 
 
 ρ = density,  kg m-3 
 ρT = water density as a function of temperature,  kg m-3 
 ∆ρS = density increment due to solids,  kg m-3 
 
A variety of formulations have been proposed to describe water density variations due to 
temperatures.  The following relationship is used in the model (Gill, 1982): 

Suspended and dissolved solids also affect density.  For most applications, dissolved solids will be 
in the form of total dissolved solids (TDS).  For estuarine applications, salinity should be 
specified.  The effect of dissolved solids on density is calculated using either of these variables 
with the choice specified by the variable [WTYPE] (see page C11).  Density effects due to TDS 
are given by Ford and Johnson (1983): 
 

 
 where 
 
 ΦTDS = TDS concentration, g m-3 
 
and for salinity (Gill, 1982): 
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 where 
 
 Φsal = salinity,  kg m-3 
 
The suspended solids effects are given by Ford and Johnson (1983):   
 

 where 
 
 Φss = suspended solids concentration,  g m-3 
 SG = specific gravity of suspended solids 
 
Assuming a specific gravity of 2.65, the above relationship is simplified to: 
 

The total effect of solids is then: 
 

 
Selective Withdrawal 
 
Outflows from reservoirs are usually from outlets on the order of a model layer in thickness.  The 
code provides an option to either specify flows from particular layers at downstream segments or a 
selective withdrawal algorithm where outflows and layer locations are calculated based on the 
total outflow [QOUT], structure type [SINKC] and elevation [ESTR], and computed upstream 
density gradients.  The selective withdrawal computation uses these values to compute vertical 
withdrawal zone limits and outflows.  It also sums the outflows for multiple structures. 
 
Outflow distribution is calculated in the subroutine SELECTIVE_WITHDRAWAL.  This routine 
first calculates limits of withdrawal based on either a user specified point or line sink approxima-
tion for outlet geometry [SINKC].  The empirical expression for point sink withdrawal limits is: 
 

and for a line sink: 
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 where 
 
 d = withdrawal zone half height,  m 
 Q = total outflow,  m3 s-1 
 N = internal buoyancy frequency,  Hz 
 q = outflow per unit width,  m2 s-1 
 cbi = boundary interference coefficient 
 
The width is the outlet width.  The point sink approximation assumes approach flow is radial both 
longitudinally and vertically while the line sink approximation assumes flow approaches the outlet 
radially in the vertical.  The boundary interference coefficient is two near a physical boundary and 
one elsewhere. 
   
Velocities are determined using a quadratic shape function: 

 where 
 
 Vk = normalized velocity in layer k 
 ρk = density in layer k,  kg m-3 
 ρo = density in the outlet layer,  kg m-3 
 ρl = density of the withdrawal limit layer,  kg m-3 
 
The shape function generates a maximum velocity at the outlet level with velocities approaching 
zero at withdrawal limits.  During non-stratified periods, outflow from top to bottom is uniform.  
Uniform flows also result from large outflows during periods of mild stratification.  As stratifica-
tion develops, withdrawal limits decrease and outflow is weighted towards the outlet elevation.   
 
Withdrawal limits can be varied by specifying a line sink and changing the effective width.  Small 
outlet widths result in nearly uniform outflows, while large widths limit outflows to the outlet 
layer.
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