HYDRODYNAMICS THEORY

Appendix A
Hydrodynamics and Transport

Introduction

CE-QUAL-W?2 Version 2 is a two-dimensional water quality and hydrodynamic code supported
by the USACE Waterways Experiments Station (Cole and Buchak, 1995). This model has been
widely applied to surface water systems such as lakes, reservoirs, and estuaries. The Version 2
model predicts water levels, horizontal and vertical velocities, temperature, and 21 other water
quality parameters. A typica grid for this model is shown in Figure 1 where the vertical axisis
aligned with gravity.
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Figure 1. Typical grid for CE-QUAL-W2, a laterally averaged two-

dimensional model of hydrodynamics and water quality.

In the development of Version 3, ariverine model was integrated into the existing CE-QUAL-W2
code that would provide the capability for modeling entire watersheds. This task was
accomplished by the following steps:

1.

2.

3.

Formal derivation of governing equations and solution algorithm with genera
channel slope

Detailed analysis of agorithm for linking branches and smooth implementation of
boundary conditions between branches

Algorithm development and changes to basic model code (including branch
definitions with slope, slope correction to solution algorithm, transfer of momentum
between internal branches)
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These topics would be performed with the following constraints and initiatives:
Utilize the same solution algorithms as the existing code for hydrodynamics and water quality
for the riverine system
Allow momentum transfer between adjacent branches for internal head boundary conditions
Refine the turbulence closure hypothesis for riverine sections

Rationale for Development of River Basin Model for CE-
QUAL-W2

CE-QUAL-W?2 Version 2 has been in use for the last couple of decades as atool for water quality
managers to assess the impacts of management strategies on reservoir and estuary systems. A
predominant feature of the model is its ability to compute the two-dimensional velodty field for
narrow systems that stratify. In contrast to many reservoir models that are zero-dimensional
hydrodynamic models, an understanding of the fluid mechanical transport can be as important as
the reaction kineticsin the water column.

One limitation of CE-QUAL-W?2 isits inability to model steeply sloping river stretches and hence
an entire water basin. Models, such as WQRSS, HEC-5Q, and HSPF, have been developed for
water basin modeling but have serious limitations. A serious problem is that the HEC-5Q (similar
to WQRSS) and HSPF models incorporate a one-dimensional longitudinal river model with a one-
dimensiona vertical reservoir model (only one-dimensional in water quality and zero dimensional
in hydrodynamics). The modeler must choose the location of the transition from 1-D longitudinal
to 1-D vertical. Besides the problem of not solving for the velocity field in the stratified, reservoir
system, any point source inputs to the reservoir section are spread over the entire longitudinal
distribution of the reservoir cell. This has created problems in two water quality modeling studies
that used WQRSS as a modeling tool:

Wahiawa Reservoir (a narrow, 5 mile long reservoir with 100 ft depth at the dam). The HEC
WQRSS model was initially applied to this two fork reservoir system. The system is shown

below in Figure 2. Stream inflow
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Figure 2. Wahiawa Reservoir, Oahu, Hawaii.
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The WQRSS model schematization is contrasted to the CE-QUAL-W2 schematization for
Wahiawa Reservoir in Figure 3. The initial reservoir study using WQRSS produced poor results
even after expending large resources to “make’ the model work. The modeling effort did not
provide a management tool for water quality managers because of gross errors in setting up the
model, i.e., combining the 2 forks and spreading the discharge from the wastewater treatment plant
throughout the full longitudinal length of the reservair.

Tualatin River, Oregon (a 32 mile long, narrow, stratified system, with pools 25-30 ft deep).
The WQRSS model was applied to this system incorrectly because the modelers decided to
break the system from a river to a reservoir at the location of a wastewater treatment plant
discharge. Hence, a large section of the Tualatin that stratified was modeled as compl etely
mixed because the modelers knew it would be inappropriate to spread a point source over 32
miles if this section was chosen as a stratified system. A later application of CE-QUAL-W?2
(Berger and Wells, 1995) correctly represented the physics of the system.

In these 2 cases, the application of WQRSS had serious limitations for the reservoir section. CE-
QUAL-W2 was subsequently applied to these cases and was able to be used effectively because of
its 2-D hydrodynamics and water quality.

Other hydraulic and water quality models in common use for unsteady flow include the 1-D
dynamic EPA model DYNHYD (Ambrose, et a. 1988), used together with the multidimensional
water quality model WASP. WASP relies on DYNHYD for the 1-D hydrodynamics. If WASP is
used in a multi-dimensional schematization, the modeler must supply dispersion coefficients to
allow transport in the vertical or lateral directions. Also, the Corps model, CE-QUAL-
RIV1(Environmental Laboratory, 1995), is a one-dimensiona dynamic flow and water quality
model used for one-dimensional river or stream sections. Each of these models do not have the
ability to characterize adequately the hydraulics or water quality of deeper reservoir systems or
deep river poolsthat stratify.

CE-QUAL-W?2, even though able to handle narrow systems that stratify, is not well-suited for
one-dimensional river channels. In the development of CE-QUAL-W?2, vertical accelerations were
considered negligible compared to gravity forces. This assumption lead to the approximation of
hydrostatic pressure for the zmomentum equation. In sloping channels, this assumption is not
always valid because the vertical accelerations cannot be neglected if the x and z axes are aligned
with an elevation datum and gravity, respectively. Also, the current CE-QUAL-W?2 algorithm does
not alow the upstream bed elevation to be above the downstream water surface elevation. If one
wanted to use the existing CE-QUAL-W2 for doping channels, one would have to break the
doping section into multiple small branches. Because water basin modeling is becoming more
and more essential for water quality managers, providing the capability for CE-QUAL-W?2 to be
used as a complete tool for water basin modeling is an essentia step in upgrading the state-of -the-
art in modeling river basins.
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Figure 3 Comparison of WQRSS and CE-QUAL-W2 schematization for Wahiawa
Reservair.
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Approach to the Problem

There are many approaches that could be implemented within CE-QUAL-W?2 for riverine
branches. By choosing a theoretical basis for the riverine branches that uses the existing 2D
computational scheme for hydraulics and water quality, the following benefits accrued:

code updates in the computational scheme will affect the entire model rather than just one of
the computational schemes for either the riverine or the reservoir sections leading to easier
code maintenance

no changes would be made to the temperature or water quality solution algorithms

by using the two-dimensional framework, the riverine branches would also have the ability to
predict the velocity and water quaity field in two dimensions. This has advantages in
modeling the following processes: sediment deposition and scour, particul ate (algae, detritus,
suspended solids) sedimentation, and sediment flux processes.

since the entire watershed model has the same theoretical basis, setting up branches and
interfacing branches involves the same process whether for reservoir or riverine sections, thus
making code maintenance and model set-up easier.

The theoretical approach allowed each branch segment to have a channel slope. The governing
equations will then be re-derived assuming that the gravity force in the x and z-momentum
equationsis adjusted by the channel slope. Thisis shown schematically in Figure 4.

River Section

Reservoir Section

Figure 4. Schematic of river-reservoir linkage where a is the slope of the channel bottom.
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Development of Governing Equations for CE-QUAL-W2

This section will formally derive the governing eguations for CE-QUAL-W2 highlighting
assumptions and limitations of the model equations.

Coordinate System

The generd coordinate system that will be wused is shown in Figure 5.

earth’ srotation
/o

W

equator

WE! rotation rate of earth

Figure 5. Coordinate system for governing equations (x is oriented E, y is
oriented N, and z isoriented upward).

Note that Wis a vector which represents the angular velocity of the earth spinning on its axis. The
rotation of our coordinate system can result in significant horizontal accelerations of fluids. This
though is usually restricted to large water bodies, such as large lakes and ocean systems. The force
that causes horizontal accelerations as a result of the spinning coordinate system is termed the
Corialisforce.
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Turbulent Time-Averaged Equations

The governing equations are obtained by performing a mass and a momentum balance of the fluid
phase about a control volume. The resulting equations are the continuity (or conservation of fluid
mass) and the conservation of momentum equations for a rotating coordinate system (Sabersky et
al., 1989; Cushman-Roisin, 1994; Batchelor, 1967). After using the coordinate system in Figure 5,
applying the following assumptions:

incompressible fluid
centripetal acceleration isaminor correction to gravity
Boussinesq approximation

1 1 1
—=—"—_—»— where r =r_ +Dr where r, isabasevalue
rr,+Dr r

and Dr hasall variationsinr

(o]

and substituting the turbulent time averages of velocity and pressure as defined bel ow

all velocities and pressure are considered the sum of turbulent time averages and deviations
t+T

from that average, i.e, U=1U + U(, where U = ? (\]Jdt as shown in Figure 6. The other
t

teemsare V=V +V(GW=W+W(and p= P+ pl where the overbar represents time
averaged and the prime represents deviation from the temporal average;
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Figure 6. Sketch of turburlent time averaging for velocity.

the governing equations become after simplification:

Continuity
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W W W

x Ty 1z =0

where u, v, w are the velocitiesin the x, y, and z axes, respectively;

x-Momentum Equation

u u u u

L, | GRS R, AW

Je ™ Ty fz— :
Coriolisacceleration

unsteady aooderation convective acceleration
2 2+ 2+ o4 tx o)
I +r_n?[ l2J+.IT l:+.” lZJC:)+l?TtXX +.IT Y +.ﬂtXZ :
rix refx y° 7o refx Ty 1Tzo

S
pressure gradient Viscous stresses turbulent stresses

where
tyx: turbulent shear stress acting in x direction on the x-face of control volume (see Figure 7)

tyy: turbulent shear stress acting in x direction on the y-face of control volume (see Figure 7)
txz: turbulent shear stress acting in x direction on the z-face of control volume (see Figure 7)

m dynamic viscosity
W component of Coriolis acceleration where

W, Wi sinf

W, W, cosf

f : latitude of the earth

WE: rotation rate of the earth

t

Xz

4 Xy

/ X

Figure 7. Sketch of turbulent shear stressesin x-direction.
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y-Momentum Equation

v v W 1\
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where:  ty,: turbulent shear stress acting in y direction on the x-face of control volume (Figure 8)
tyy: turbulent shear stress acting in'y direction on the y-face of control volume
ty,: turbulent shear stress acting in y direction on the z-face of control
W=0
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Figure 8. Sketch of turbulent shear stressesin y-direction.

z-Momentum Equation
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where: t,: turbulent shear stress acting in z direction on the x-face of control volume (Figure 9)
t 4 turbulent shear stress acting in z direction on the y-face of control volume
t 2 turbulent shear stress acting in z direction on the z-face of control volume
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Figure 9. Sketch of turbulent shear stressesin z-direction.

Note that the turbulent shear stresses are defined as follows:
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Coriolis Effect

As noted above, dl the W, terms are zero and can be eliminated from the y and zmomentum
equations. If one integrates over the y-direction (therefore assuming the net velocity in y is zero)
and assumes that the horizontal length scale is much greater than vertical length scale, it can be
shown by using scaling arguments that the Coriolis acceleration forces are negligible (Cushman-
Roisin, 1994). Hence, prior to lateral averaging, the Coriolis acceleration terms will be neglected.

Adjusting the Coordinate System
The coordinate system will be transformed into a form compatible with the origina W2

development where the vertical axisisin the direction of gravity. Also, as shown in Figure 10, the
coordinate system will be oriented along an arbitrary slope.
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Coordinate System

h gravity

Figure 10. General coordinate system with zaxis compatible with original
derivation of W2 model.

The gravity acceleration is a body force that is then represented by a vector:
g=-gNh

where h is the surface normal from the earth’s surface (h is an elevation in the opposite direction
to the accel eration of gravity vector) and g is the accel eration constant (9.8 m/s?).

Thisterm can be written as 3 vector components:

__Th
Oy, =- ﬂX
__,Th
¥~ 9%y
__.Th
gz_-gﬂz

These gravity components can be applied to an arbitrary channel slope as shown in Figure 11.

Appendix A1l



HYDRODYNAMICS THEORY

A h

Figure 11. Sketch of channel slope and coordinate system for W2 where the
x-axisisoriented along the channel slope.

The channel dope can also be incorporated into the definition of the gravity vector if the x-axisis
chosen parallel to the channel dope as:

The channel slopeisdefinedas S; = tana

and dso

= ﬂ—h— sina
Oy = g‘ﬂx_g

= ﬂ_h_ Cosa
gZ_ ﬂZ_g

Th
The gravity acceleration in y is assumed to be negligible since —— = O in the lateral direction of

y

the channel.

Governing Equations for General Coordinate System

After making the following simplifications:
redefine coordinate system
eliminate Coriolis effects
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neglect viscous shear stresses

The governing equations become:

Continuity
oW W
x fy 9z

x-Momentum Equation

u u u u . 1 1 a9t it t 0O
It x Ty Tz 0 X refx Ty fzg
unsteady accdleration convective acceleration pressure gradient turbulent shear stresses

y-Momentum Equation

W, oW, g 1% 1, W, .0
1t X ﬂy 9z r ﬂy r g X ﬂy 1z

z-Momentum Equation

Tw UﬂW _fw _Tw lE_'_l?ﬂ[tD(_'_ﬂtzy_'_ﬂtzzC:i
1t X Ty 1z rz refx Ty 1z o

Simplification of z-Momentum Equation
Assuming that the longitudinal length scale is much greater than the vertical length scale, this

makes all vertical velocities << horizontal velocities. A result of this assumption is that vertical
velocities are very small such that the z-momentum equation becomes the hydrostatic equation:

LTp

—— = gcosa
r 9z g

This assumption prevents the model from accurately modeling vertical accelerations of the fluid as
aresult of convective cooling at night and other such vertical accelerations.

Further Simplification of 3-D equations by Lateral Averaging
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The governing equations above will be laterally averaged after decomposing al velocities and
pressure into a lateral average and a deviation from the lateral average. The vertical and
longitudinal velocities and pressure are defined as follows:

= = V2 . .
U=U+U"where U =% Q udy and B isthe width of the control volume
W=w+w'
V=V+v(
p=p+p®

The double overbars represent the spatial average of the temporal average quantity. The double
prime represents the deviation from the lateral average and is a function of y. This is shown in
Figure 12.

N ——— VY,

X

Figure 12. Lateral average and deviation from lateral average components of
longitudinal velocity

These definitions are substituted into the turbulent time-average governing equations and then
laterally averaged. The ymomentum eguation is neglected since the average lateral velocities are

zero, i.e, V = 0., and cross shear stresses that contribute to vertical mixing will be computed
from the analysis of wind stress. The equations that remain are the continuity, x-momentum, and
Z-momentum equations.
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Continuity Equation

The continuity equation becomes after substituting the above velocity components and laterally
averaging

(T +ud) +‘H(\:/+v<l1) +‘H(W+W<ﬂ) o

fix fy iz
The lateral average of adouble primed variableis by definition zero, i.e.,
— 1”7
ut=— Qutly =0
B v
Also, note that:

ﬂ(\:/+v(N):lyéﬂ(\:/+v(N)dy:(\=/+v@ yz:ﬂ"yz:q
Ty Byl Ty B " Bl

where q is defined as the net |ateral inflow per unit volume of cell [T

TE+u® 1M +ug 1T 1 19 118U
B w YOV B0 YT Y B

and

IW+we 1 IW+we 10w 1we 19 1 BW
= 89 w “TBORY"BO0n Y Bl B 1

Combining terms, the continuity equation becomes

TBU _fBW _
% 1z =B

x-Momentum Equation
The lateraly averaged x-momentum equation is more easily simplified by writing it in

conservation form (this can be verified by using the continuity equation with the xmomentum
equation),
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‘ﬂ(ﬁ+u<ﬂ)+‘H(ﬁ+u<ﬂ)(ﬁ+u@+‘|1(\=/+v<n)(ﬁ+u<n)+ﬂ(W+w<n)(ﬁ+ucn) _
it ix Ty 1z B

EM*_lanxx _+_T“:Xy_+_T[txz(.:j

r X r 8ﬂX Ty 1z @

gsina -

Each term in this equation can be simplified as follows (note that the spatial average of any double
primed variable goes to zero by definition):

The unsteady acceleration term:
TO+ugh _1 \‘H(U rug 1O 1Vue 19 19’ 1980
@ BO 1t dy= B O‘Ht dy+ B O‘Ht dy B‘Ht gldy+ B‘Ht Oy = B 1t

yl

The convective acceleration terms

(T +ud)(T +ud) _Jﬂ(u+u<ﬂ)(u+u<ﬂ) _ 17900 1%210ue . 13fuee
x “80 1 =5 Oqx dy+BO w YO g VT
11 19 % 1'ﬂBuu 11°%
Tdy +—=—— cyaud it
B fx 0J y + B Tx OJ V=B 1 B.”X dey

dispersionterm

Similarly for the other 2 terms:
1T +ud)(W + wa _iﬂBU_\Tv+£1yf
1z "B Tz B .”Zy?J

dispersionterm

By dicly

1(T +ug(v +ve)

= ums/atyz - u(m/(l#yl =

iy
The gravity term
- 1 y2 y2
gsina =— (psmady——(gsma)(ply gsina
yl yl

Pressure gradient term
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1(P+p® _\'n(p+p<n) 171p ‘Hp@ Sl 1qg% o 11Bp
x BY 1x BO'H_ Oqx V=B 1x Opdy B fx Opwy_B x

yl

or the above equation can be written, assuming that the derivative of the lateral average pressure
gradient in the x-direction is not afunction of y:

i(p+p® _1°M(B+p® 17, 1p® 1%, 19° . 1
x BO ™ VBN BOR Y B BB 0P T
The shear stressterms

ot LT, 0_ 179, 1729t 179,

g‘ﬂx y 1z 5 Boﬂxdy+Eyolﬂydy BOﬂzCI B Gxxy

19 19" 1 8Bt 'ﬂthBtolBt BtQ
_léxydy-*-_1 xzdy:_éﬁLI =+ ’ ﬂ = al XZ;
BTx,; Bz ; Bg X Ty 9z . Bg X 9z p
Then collecting all terms and neglecting al dispersion terms, the fina x-momentum equation is
then after simplification:

IBU YBUU YBUW . Bfp, 1398t , , TBt XZQ
+ + =Bgsna- ——+— +
fit fix 1z T ‘ﬂx é ix 1z 4

Summary of Laterally Averaged Equations

In the development of CE-QUAL-W2 in Cole and Buchak (1995), the lateral average terms were
represented by uppercase characters, suchthat U =U , W =W, and P = P. The shear stress

terms will be assumed to be latera averages and the double overbars will be dropped for
convenience. Making these simplifications, the governing equations become

Continuity Equation

TuB N TwB

Ix Mz = a8

x-Momentum Equation

fUB _ fUUB  IWUB BIP  11Bt,  11Bts
It x 71z r ‘ﬂx roqx r
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z-Momentum Equation

Now we have 3 equations and 3 unknowns: U, W, and P.
Simplification of the Pressure Term

The z-momentum equation reduces to

z
P=P, + gcosa Qr dz after integration from a depth z to the water surface defined as z=h. P,

isthe atmospheric pressure at the water surface (see Figure 13).

Figure 13. lllustration of layout for simplification of pressureterm.

This equation for pressure is now substituted into the x-momentum equation and simplified using
Leibnitz rule. The pressure gradient term in the x-momentum equation then becomes:

1P_ 1R, fh goosma oI
Tl TR Qg @
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The first term on the RHS is the atmospheric pressure term (accelerations due to atmospheric
pressure changes over the water surface), the second is the barotropic pressure term (accelerations
due to water surface variations), and the third is the baroclinic pressure term (accelerations due to
density driven currents).

In CE-QUAL-W2, the atmospheric pressure term is assumed to be zero and is neglected. This
implies that for long systems during severe storms the model will not be able to account for
accelerations on account of atmospheric changes. (For a large physical domain, variations in
meteorological forcing may be significant. This is discussed in Variability in Meteorological
Forcing.) The pressure term then becomes with this simplification

1P ges e
r‘ﬂx_gcosa‘ﬂx r Q‘ﬂxdz

Therevised form of the x-momentum equation is then

TuUB N fuuB N TwuB

fit Tx 1z
h B 1 {Bt 19Bt,,
gesna +gc°$81111_x' &c’%dﬁ r_ﬂ‘ﬂxxx * r_ﬂ‘ﬂtz
h

Effectively, we have removed pressure from the unknowns by combining the z-momentum and x-
momentum equations, but we have added h as an unknown.

Free Water Surface Equation

This equation is a simplification of the continuity equation. The continuity equation integrated
over the depth from the water surface to the bottom is called the free water surface equation.
Figure 14 and Figure 15 are definition sketches for the CE-QUAL-W2 cell layout without and
with a channel slope, respectively.
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CE-QUAL-W?2 coordinate system: a=0 g
7=0 " : Z:Zsurface?:h v ! ! . ! X!

Figure 14. W2 coor dinate system with no channel slope.

The continuity equation isintegrated over the depth as follows:

"quB "qwWB "
o&dz+ d"—dz = (Bdz
h ﬂX h ﬂZ h

Thefirst term can be expanded as follows using Leibnitz' srule:

h h
MuB TN tho o Th
T dz = € Bdz- ﬂXUBIh+ﬂXUBIh
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CE-QUAL-W?2 coordinate system: a>0

_______

Z‘O

Figure 15. W2 coor dinate system with finite channel slope.

Theintegral of the vertical flow rate over z relates to changes in water surface elevation as shown
below:

"TWB
o—dz =WB|, - WB|,

h —_— ﬂh
where W[, = ﬂt ﬂX
ih . Th

W, = qt *Us " qx

Combining these term together, the free surface equation becomes

Th Th Th ‘Hh "
dJBd "I uB|, + o UB|h+U B, — t +U,B, vl - B.U, h(p
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Canceling out terms and applying the no-slip boundary condition that Uy, is zero,
T Th "

— (YBdz- B, = pBdz

ax & T

or

Th 1% .
B, — =— JBdz- (pBdz
g = 3 0988z O
where B;, isthe width at the surface.

Equation of State

The density must be know for solution of the momentum eguations. The equation of state is an
equation that relates density to temperature and concentration of dissolved substances. This
equation istermed

r = f(Tw,Frps,Fs)

where f(Ty,F1ps, Fs)=density function dependent upon temperature, total dissolved solids or
salinity, and suspended solids.

Hence, the temperature, total dissolved solids, and suspended solids must be known and are
determined from the water quality model.
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Summary of Governing Equations

THEORY

Table 1 shows the governing equations after lateral averaging for a channel dope of zero (original
model formulation) and for an arbitrary channel slope. Parameters used in Table 1 areillustrated in

Figure 16.

Table 1. Comparison of governing equations for CE-QUAL-W?2 with and without
channel slope.

Equation Existing governing equation assuming no channel Governing equation assuming an arbitrary channel slope
dope
X TuB fuuB TwuB TuB fuuB TwuB
momentum + + = + + =
fit ix iz Tt x 1z
fh  oB r _ fh gcosaB % 9r
B—-— dz + Bsina +gcosaB—- ——— dz +
ix r ho‘ﬂ_x ‘ J J fix r hoﬂ_x
118, , 11Bt, 11Bt, . 191Bt,
rqx r 9z rqx r 9z
z 19P 19P
momentum 0 = g - — 0 = gcoa - —
r 4z r 4z
free surface h h h h
i ﬂh ﬂ N\ \ ﬂh ﬂ \ N
eaion | B — =— JJBdz- (pBdz B, — =—— (}/Bdz- (pBdz
Tt X, \ Tt \

Note:  U,W: horizontal and vertical velocity
P: pressure
tyt,: lateral average shear stressin x and z
h: water surface

B: channel width

0: acceleration dueto gravity
r: density

a: channel angle
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I Datum

THEORY

gravity

channel slope= S, = tana

Figure 16. Definition sketch for channel slope (exagger ated slope).

Linkage of Branches with Internal Head Boundary

Conditions

Linkage of Mainstem Branches

One issue in the development of the river basin model is the linkage of branches of different
channel dlope orientation. Figure 17 shows in detail some of the variable definitions with the

current sloped channel scheme.
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CE-QUAL-W?2 coordinate system % r E PB

Figure 17. Variable definitionsfor W2 model with arbitrary channel slope.

But the vertical velocity of acell is not determined at the side edge of a segment, but at the bottom
of the segment. In order for all the volume to be passed from one cell to another, all the flow from
the downstream segment (ID) should be transferred to upstream segment (IU). Since the model
does not assume strong vertical accelerations, we may be forced to neglect the vertical component
of velocity at thistransition and assume that the longitudinal velocity entering segment 1U isUp.

The linkage between branches when the grid sizes are different between the upstream grid and the
downstream grid were accomplished by flow and mass conservation at the linkage. This is
computed internally. This spatial averaging of the flow (and velocity), heat and mass to preserve
flow and constituent mass between branchesisillustrated conceptually in Figure 18.
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Figure 18. Transfer of mass and momentum between main stem branches
with unequal grid spacing.

Linkage of Tributary Branches

The existing W2 model assumes all tributary branches come in at right angles to the main channel.
In many cases this is appropriate. This orientation (shown in Figure 19) allows volume exchange,
but no momentum exchange between branches. The CE-QUAL-RIV1 mode (Environmental
Laboratory, 1995) and the EPA DYNHYD (Ambrose, et al., 1988) a s neglect momentum effects
of lateral tributary inflows. For branches with arbitrary channel orientation (as in Figure 20), code
changes will be made to allow momentum, in addition to volume (this is accounted for in the free
surface equation as @), to be exchanged between branches.

In this section the linking of these tributary branches with the main stem and preserving
momentum between them will be discussed.
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O2i1

QZ tributary branch

Figure 19. Linkage of tributary brancheswith existing W2 model.
Ozi1

q2 tributary branch

Figure 20. Linkage of tributary branch coming in at an angle to main
branch.
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The tributary inflow can create shear stress along both the longitudinal the axis of the main stem
branch and along the y-axis of the segment. In the current model, this cross-shear term is neglected
and does not impact vertical mixing. The only vertical mixing as a result of cross-shear is from the
wind component in the lateral direction. For this new formulation, the cross-shear mixing will be
added to the cross-shear wind stress for the computation involving the vertical eddy viscosity and
vertical diffusivity. This involves determining the y and x velocity components of the entering
branch as shown in Figure 21.

q2 main stem

Q2 tri butary,

Figure 21. Schematic of branch connection.

Longitudinal Momentum

The vector component of velocity in the x-direction of the main channel, Uy, can be computed by
analysis of the channel orientations. This component in the x-direction would be: Uy=Ucosb where
U is the longitudinal velocity of the tributary at segment ID for the tributary branch and b is the
difference in the angle between the main stem and tributary segments (see Figure 22).

02 tributar
y\// P

bZquai n stem™Otri butary

Figure 22. Schematic of x and y velocity components.
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The conservation of momentum about a control volume, the main stem segment, would result in
an additional source of momentum. Lai (1986) shows that the correction to the xmomentum
equation would be:

qBU,
where g isthe lateral inflow per unit length.

This arises from re-deriving the momentum equations and assuming that al the fluid (q) entering
the segment is moving at the velocity Uy. This correction to the x-momentum equation would be

TuB N TuuB N TwWuB - gBsina +gcosa m gcosaB(\)ﬂLdZ+
fit fix fz ix roooIx
1B, , 19Bte, g

r qx r 9z —_—

momentum from side tributaries

Cross-shear of Tributary Inflow

The y-velocity coming into areservoir also may contribute significantly to vertical mixing. They
component of a tributary inflow is (see Figure 34): U=Usinb. Since there is no ymomentum
equation, the only mechanism for mixing energy with the present formulation of the vertical shear

stress i the cross-shear stress from the wind given earlieras t,  @C,, r JW2sin(Q, - Q,).

This cross-shear stress accounts for the shear stress and mixing that results from wind blowing
across the y-axis of the segment. The lateral branch inflow at avelocity, Uy, could be thought of as
an additional component of that stress under the current context of the turbulence closure
approximations.

Assuming that the water in the y-direction has zero velocity, the additional shear stress could be
parameterized as an interfacial shear:

f
tytributary @ Eui

wheref isan interfacial friction factor. For two-layer flow systems, f has been found to be of order
0.01. The value of f for this non-ideal approach could be determined by numerical computation.
Hence, the value of the cross-shear term would be increased by a latera tributary inflow. This will
be evaluated by numerical experiments computing the magnitude of the cross-shear term from
wind and from lateral inflow. A more robust theoretical approach may be needed to account for
this increase in lateral shear, but that may be necessary only if the model includes the y-
momentum equation.
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Implementation of River Basin Model in W2 Solution
Technique

The corrections to the governing equations incorporating the sloping channel and the transfer of
momentum from a side tributary are incorporated in the new solution technique as shown below.
Numerical Solution for the Free-Water Surface Equation

The following derivation of the solution technique will follow the derivation format and approach
used in Cole and Buchak (1995). Deviations from or minor corrections from that approach will be
noted.

The free surface eguation,

Th _ 114 \
B, . ﬂthJde- h(qudz

will be solved by substituting the momentum equation,

TuUB N TUUB N TwWuB fh  gcosaB “9r &

= gBsna + B—- +
It 1x Nz gesina +gcosa fix r l91I_x
198, , 198t o
r qx r 9z

in finite difference form and then simplifying. The finite difference form of the momentum
equationis

B WUB h B~
UB"* =UB" + Dt{-ﬂUU | Iwu +gBsina +gcosaBﬂ—-%oﬂLd
fix 1z fix rooooIx
1
19Bt, | lﬂBt”+qBUX}i"
rqx r 9z

Defining for simplicity theterm F as

] TuuB ] TwuB N lﬂthx
Ix Nz r qx

F =

or substituting in for t , F becomes
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Uo
_fUUB - fWUB T6BA 4 5
x Nz x

(Note that in Cole and Buchak (1995) the term F is defined differently in Equation A-10 than in

Equation A18.) Substituting in the tem UB™ in the free surface equation for UB, the free
surface equation becomes

Th _ 1% 14 1% oo T fh|"
—=—0UB"dz+Dt— ¢ "dz+ Dt — @ gBsnadz+ Dt— g cosaB—| dz-
gt T O w0 1x O° 1x 09 4
h z n h n h h
Ty 900888 I iz v ot -y 2180e oy e 1 gBU Pdz- "Btz
%, r h X X7 r 1z %, h
Some of these terms can be simplified asfollows:
1" 1
— O 9Bsnadz =gsina —— () Bdz
x99 95 % O
T4 Th T&h, _ 0
— cosaB_—dz=gcosa - Bdzz
qx O 9c0saB g, dz =goosa g, £, O Blzs
h z h z
10 gcosaB "\ Ir Az _gcosa T A Tr dzdz
ix, rooIx ro x> i
15 19Bty, 11
w0 Tz ®T ﬂx(Bt”|“ Bty

Then substituting these into the above equation we obtain

Th _ 1% IR S I 1T3h" . 2
—=—UB"dz+Dt— ¢y "dz+ Dtgsna — ¢) Bdz + Dtgcosa —&— ¢)Bdz=-

% gt T O w9 I O ° xgix| 07
gcosa T “,aTr [ q1 q"

Dt

h h
~ D—=|B -B "+ Dt— A\qBU "dz- ¢p"B
OBOﬂ_ dzdz + v ( txd, txz]h) + 'ﬂxhoq Uldz ( dz

r'ﬂxhhx

Then all termswith h are grouped on the LHS such that
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'nh 1T8&8h% . 0 114 1 7"
— - Dtg cosa — de =— AHUB’ dz+Dt dz+Dtgsna — A Bdz -
3" J X&IX E, x hO d: J %, 0
gcosa'ﬂh\z\'ﬂrn 171 " T " fy A
—d3 dzdz+ Dt— —\B -B +Dt— BU dz - Bdz
r ﬂxh hOﬁX ﬂxr ( txz|h txz|h) ﬂxhoq X hG:I

Thefirst term on the LHS can be put into a backward finite difference form as

h n-1
Em o Em
T Ah " .
The second term - Ditg cosa —§—— () BdzZ , can be simplified using the chain rule for
X4 -
a

partial differential equations as

Th|" 1 " " %
- Dtgcosa—| — @ Bdz- Dtgcosa ) Bdz
’ fix O ’ 0™ e

n n

Then using a second order central difference for the second derivative and a first order backward
difference for the first derivative such that

h 2o M
- Dig cosa 1 il (‘)de- Dtgcosa(‘dezﬂ ho
h h
1" " hi,-2h"+h",
- Drgoosa M2 Bdz- Digcosa ¢) Bdz—"1-
Y [T V0 DX’
1" 0
Also, noting using a backward difference ﬂ_ 0 Bdz = _9d3dz - d3dz
Xh )
i i-19

Then grouping and collecting terms and multiplying through by DtDx, the LHS becomes after
simplification
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wherethe RHS isdefined as

h
RHS = l (‘)UBi”dz+ Dt
i

h
gcosa T " %9

Dx
rooIx,” Ix

Al
x

Oﬂ-dZdZ"‘ Dt —

THEORY

U é 21n h ad

bon' 000 ST G+ o i

H e A LRI Y

= (RHS)"DxDt + B,h,"*Dx

h 1-[ h

(fdz+Digsna —— ) Bdz-

h 1TXh
f l(Bt 4, - Bt )+Dt1h‘ qBU , dz - ¢ Bdz
fIxr v An *n ﬂxho S

and is evaluated at time level n.

Theintegral of the cell widths can be put into a summation over the vertical layers as

" &

OBdz =a BH,

h i kb

" &

dBdZ = a- BHn-l
h i-1 kb

where BH; is the value of the width times the layer depth for the right-hand side of a cell (see
Figure 23). In the W2 code this is the variable BR(I,K) times H(K), or the derived variable

BHR(I,K).
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% r,F,PB
e UA,D,BR,t,
o i+1 W,BB,D,® A,

Figure 23. Cell grid definitions.

Some of the RHS terms can be put into a format compatible with the model schematization such
as

X 1 e kb 6 1 & n
1Q(UB) 2>V A UBH » - eR UBH | - JuBH | 2= L4 ueH, | - ueH,| )
x4 X DX & « i Kt g DX
h kb kb fs) kb n
Dt &F "dz » Dt - aFH N ST AT LY § SYRRTE
ﬂxh ﬂ Dx kt i kt i-lb Dx kt
h o " y
. \ : Dtgsina & 0
Dtgsmaio de»Dtgsmaié BH, » g—ga BH,| - é BH,| +=
ﬂxh ﬂx kt DX ekt i kt i 1ﬂ
Digsina £
gsina & 1o BH )
D( i i-1
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gcosa ﬂ A gcosa ﬂ ! ﬂ_ »
Dt ; ﬂxhd?)ho&dZd » Dt " ﬂ d?) 1o HrdZ
gcosa & ﬂ_r 2 -
DX & Hr%(BHrL )
11 D
oL st - 8k )X {(Be.d, - Bl ) - (Bted - Bd),

Thelateral inflow of momentum term represents the gradient over x of the inflow momentum.

Dtﬂ“ 1 8
ix 0auBU, dZ»D’[ﬂ aqU BH,

kt
h

OpBdz »é qBH,
h kt

Compiling these terms into one equation, we obtain

Ah’ +Xh"+Ch, =D
where
é- gcosaDt® &
- g 0eoR S|
e Dx kt i- lU
é 23 kb uu
x=gocs 9020 gy | K |
2 T kt i kt i—lga
é- gcosaDt® & u
Cog . aBrly
e kt iu
Iéb
D =Dt4 (UBH,| - UBH | )+BhriDx+ D124 (FH,| - FH,| )+
Kt kt

kb kb kb
thgs'naé (H,| - BH,| )+0* 828 (BH,| - BH,| )4 1111—rH +

r kt kt

kb
Dtha gBH, + DxDt? 1?Xa qu,BH +—[Bt - Bt | ) - (Bt xz|h - Bt xz|h)i.1]

kt
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This equation is solved for the water surface elevation at the n+1 time level using the Thomas
algorithm. The boundary condition implementation is the same as described in Cole and Buchak
(1995).

Numerical Solution of the Horizontal Momentum Equation

The x-momentum equation,

fuB + fuuB + TWuB fh gcosaB ' fIr 4z

=gBsna +gcosaB +
It X 1z X ro X
lﬂBt’“+lﬂBt“+qBUX
r 9gx r 9z

is solved using either afully explicit or an explicit/implicit finite difference solution technique. In
the W2 Version 3 code, the User specifies either of these techniques.

Explicit Solution

This scheme is based on solving the partial differential terms using an explicit finite difference
technique where

UM™B™ =U"B" +Dt{- Tuus TWUB | gBsna + gcosaBm- gcosaB I ),
fix 1z fix ro X
r9x r 9z

The various terms are put into finite difference form as follows:

This longitudinal advection of momentum [termed ADMX in the W2 code] is an upwind
difference scheme (where the order of differencing is dependent on the sign of U), i.e., for U>0

fuuUB
Ix

1 n n n n n n
@&[Bukuiﬂlz,kui,k - B|-1,kUi-1/2,kUi-Lk]

ik

The vertical advection of momentum [termed ADMZ in the W2 code] is also an upwind scheme
based on the velocity of W, i.e., for W>0 or downward flow

TWUB|
iz |i,k

@D]Z-k[ iT(Uir,]kB|r,1k)_ ii-lui?k-lBlr,]k-l)]

The gravity force [termed GRAV in the W2 code] is
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gBsna =gsnaB'’
The pressure gradient [termed HPG in the W2 code] is

gosap T 9C0saB fit \ _ gCosaB' ). goosaBy

x r O Dx L r Dx

h

(I’ i+1k ~ r ik )n Dzk

The horizontal advection of turbulent momentum [termed DM in the W2 codg] is

B B" n
iﬂ ﬂ A( ﬂX _®B.,,A (‘_)(U - _k ®B",,A ¢ Un k)
r ﬂX mml+l/2ﬂ I ) gDXID)ﬂ 1/2ﬂ i

The contribution to longitudinal momentum by lateral branch inflowsis
n

qBUX:qBUAM

Using the definition of the shear stress,

6, LA UG
txz= wind tbottomfritiion ﬂZ H'

the vertical transport of momentum is

1 9Bt 1Bt xz _ 1 Bé U l] x Blr,]k+l/2 0
o e g wind t bottomfriction + H DZ D -
r Yz Tzr 1z Ze112" g

g | +t B n + Azi,k+1/2 (Un _ U_n )ljl_

windlj k+1/2 bottomfridion|; | 41/ Dz i k+1 i.k/U

é ' k+1/2 u
n ..

e B|,k—l/2 9

gDZkDZk—llzr 7

wmd|I k-1/2 +t bottomfridion

n +A1Ikl/2 (U Un )E
Hevz Dzy), u

D:D~

Implicit Scheme

Theimplicit technique was utilized to reduce the time step limitation for numerical stability when
values of Az were large, asfor an estuary or ariver system. This occurs because the time step
limitation is afunction of Az. Only the vertical transport of momentum term was solved
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implicitly. All other termsfor the solution of the horizontal momentum equation were the same as
the explicit scheme.

The horizontal momentum equation was split into the following 2 equations:

fuB _TUUB _ TWUB fh  gcosaB \ﬂrd

=gBsna + gcosaB z+
1Tt oax 1z 0 90 T O
1 ﬂBt XX +1 1-[B(t bottomfriction +t Wind) + qBUX
rqx r Mz

(1)

and

()

Equation 1 iswritten as

U/B"™ =U"B" +D{- TUUB JwWUB +gBsna +gcosaBm- gcosaB oIy, 4
fix iz fix r %

1 ﬂBt - +1 ﬂB(t bottomfriction +t Wind)+ qBUX}In

rofx r Mz

)

where U* is the velocity at the new time level before the application of Equation 2. Equation 3 is
solved similarly to the solution of the fully explicit technique outlined above.

Equation 2 isthen solved using afully implicit technique as

n+lpn+l *pn+l n+1 =
fuB _ (U™ - U'B )zué%n%ﬂu 6
it Dt r Yz 1z &

This can be rewritten as

39137.31/2 Q‘fi‘Azi,m/z

U-n+an+l :U-*Bnﬂ + marjl:—lllz 9
I I Y é DZkr £Dzk+l/2

b ol o]

éAZi,k— 1/2 (U n+l U n+l )
e Dz ik T Yik-1
e ~k-1/2

o\

Regrouping terms at n+1 time level on the LHS, the equation can be written as
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AUM. +VUN +CUM, = DU!,

ik+1

where

DtEi”kﬂl/z OeAn k- 1/2U
BlnI:lDZkr QEDZk 1/2 u
V =1+ n;ltl/z Q?Az. k+1/23+m3n|211/2 Q?Az. K- 1/2U
n+1 n+l
éBlk Dzkr QBDZk+1/2u B.k Dzkr QBDZk 1/2u
DtEﬁ”k*iuz OeAn k+1/2 U
3 BYDZ! 58Dz, (
D=1

C=

The resulting simultaneous equations are solved for U™ using the Thomas algorithm.

Turbulent Advective-Diffusion Equation

Asin the momentum equation, we will introduce time-averaged variables for velocity (see Figure
24) and concentration (see Figure 25).

3

u

cl

time
t t+T

Figure 24. Velocity variability with time.
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ol

| time
t t+T

Figure 25. Variability of concentration with time.

Here we take the instantaneous vel ocity and concentration and decompose it into amean and an
unsteady component, as

_ 1,
u(t) = u+ ugt) where u = T 9" ub)dt
Similarly for w, v, and c:

V=V+ Ve
W= w+ wet
C= c+ ct

Then subgtituting these into the 3-D governing equation and time averaging the equation, we obtain:

fc  -fc  -fc  —fc _ _éFc  Tc fc
iV T Vy TV T P T g Tz

transport by mean advection

o] ey g

molecular diffusive transport

Tp— Ty Ty -
-W(um)-ﬂ—y( ©¢)-ﬂ—z(wdc¢)+r

turbulent mass tranport

The“new terms’ in our governing equation represent mass transport by turbulent eddies. Asthe
intensity of turbulence increases, turbulent mass transport increases. Notice also that all velocities and
concentrations are time averaged. We now define the following turbulent mass fluxes:
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and, N
— C
(uee) = - E, T
(vee) = - E, :TT—;
S qc
(wee) = - Ezﬂ—;

where E, Ey, and E; are turbulent diffusion coefficients. Substituting into the above
equation:

fe gde, ode w _.”C Al (E+D)—CH
it Ix Ty "1z xe G
L T1é fcu, g é fc U -
—a\Ey*D )—yg+—alE,*D)—qtr
"y S( Y )ﬂyH 12 S( )ﬂzH

In turbulent fluids, Ey, Ey, and E; >> D, hence D can be neglected, except at interfaces where
turbulence goesto zero. The turbulent diffusion coefficients can be thought of as the product of
the velocity scale of turbulence and the length scale of that turbulence. These coefficients are
related to the turbulent eddy viscosity - one is turbulent mass transport, the other is turbulent
momentum transport between adjacent control volumes. In general, these turbulent diffusion
coefficients are non-isotropic and norn-homogeneous.

Development of W2 Water Quality Transport Model

For a2-D model like CE-QUAL-W2, we will now introduce spatial averages acrossthe lateral
dimension of the channel of the turbulent time-averaged quantities, such as

[@N
I
O
I 2
o:

c
I
c
+
<

W= w+ w

where the double overbar isa spatial average over y and the double prime is the deviation from the
spatial mean asillustrated in Figure 26 for velocity and Figure 27).
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N ———_ ¥,

U y

Figure 26. Lateral average of the velocity field.
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N YT,

Figure 27. Lateral average of the concentration field.

These are substituted into the governing equation and then the governing equation isintegrated
over the width such that

masstransfer at side boundaries

BC qBUC 9YBwWcC _ == = - = 1 ﬂEO
R T B(vc|y2- Ve[, +c'v], - Cv yl)+ﬁ§(1D+EX)BWB+
+1% D+ Z)B.”—Cg- gﬂBu ¢ +ﬂBWGMﬂ'JJ+?B

126 g fx 1z g
If you areinterested in the mathematics, note how the following terms are simplified:
1729C+c . 1729C),  17M(c®, 197 197 1 BT
SO ey == oy + = (o dy = — (Fdy + = - (plly = S
B it yB ‘thB ‘thB‘HtO:yB‘HtO:yB‘Ht

y1 y1 yl
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e 11
ud wiely =
X 0 Y ycf Y

1729@ +udc +c8, _172q(ca),  17qcwd . 1
B T« dy_Eyol Tt dy+Ey01 t B

1 1BTC 1 1Bu®s
B ft B 1x

Note that the spatial average of any double primed variable goesto zero by definition.

These turbulent dispersion coefficients are defined as

— . TIc
u'c'= Dx‘ﬂx
we =D,

ZﬂZ

These dispersion terms are aresult of spatial averaging of the velocity field laterally. In general,
except at an interface, Dy >> E, >> D and similarly for D, >> E, >> D. Substituting in for the
dispersion coefficients, and using g to be the net mass transport from lateral boundaries, this
equation becomes

fBc  WBuc  TBWE _ g+ 1 3 pTc0, T, gTC0, 1
Tt 1z e < xg T2€ © fzg

If we drop the overbars replacing them with capitals, replace c with F, we then obtain the
governing equation of CE-QUAL-W2:

'@Dxﬂ—g ﬂa%DzﬂF 0

1BF TUBF TWBF Ix QI
+ + - = 0B+ B
fit fix fiz ix ‘ﬂz
F = laterally averaged constituent concentration, g m>

Note that this can be concentration or temperature since the concentration of heat can be
determined to be r ¢, T wherer isthe fluid density, ¢, isthe specific heat of water,
and T is the temperature. Hence, the above equation with C or r c,T for F would
be appropriate governing equations for concentration or temperature,

respectively.
Dy = longitudinal temperature and constituent dispersion coefficient, n? sec’
D, = vertical temperature and constituent dispersion coefficient, n? sec’
g = lateral inflow or outflow mass flow rate of constituent per unit
volume,

Appendix Ad4



HYDRODYNAMICS THEORY

g m3 sec't
S = lateraly averaged source/sink term, g m sec’t

In order to solve this equation we now need to determine the following:

laterally averaged velocity field - from momentum equations
appropriate boundary and initial conditions

D, and D,

source/sink terms laterally averaged

Numerical Solution

Thefirst step in the numerical solution isto define the computational grid (see below). Thegridis
space-staggered since some variables are defined at one location and the remainder are displaced
by Dx/2 or Dz/2. The grid discretizes a waterbody into computational cells whose locations are
defined by their segment (i) and layer number (k), i.e., cell (k,i). Variables arelocated at either the
center or boundary of a cell. Variables defined at the boundary include the velocities U and W,

dispersion coefficients Ay, Dy, Az and D, and internal shear stresst. The variablesr, F, P, and
B are defined at the cell center.

segment i-1 segment i segment i+1
g K]
layer kt o + o + WL + o]
0 0 0
layer k-1 o + 0 + (o} + 0 H
—0 0 0
layer k © + o} + ? + Q
0 0 0-
layer k+1 o + Q + Q + T
D 0 0
—_
Legend
o U, A,D, T,
0 W, A, D,
+ p, & P, and 8

Figure Al. Variablelocationsin computational grid.
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There is a rational basis for choosing variable locations. Since the constituent concentration is
defined at the center and velocities are defined at the boundaries, spatial averaging of velocitiesis
not required to determine changes in concentration over time. Also, the horizontal velocity is
surrounded by a cell with water surface elevations and densities defined on either side. Thus, the
horizontal velocity is computed from horizontal gradients of the surface slope and densities
without requiring spatial averaging of these variables.

The geometry is specified in Figure 1 by a cell width B, cell thickness H, and cell length Dx.
Several additional geometric variables are used in the calculations. These include the average
cross-sectional area between two cells (k,i) and (k,i+1)

. o+ . .
B H " — Bk,l H K,i 2 Bk,l H k,i+1 (A-14)
the average widths between two cells (k,i) and (k+1,i)
S+ .
Bbki — Bk,l Bk+1,| (A-15)
! 2
and the average layer thickness between layers k and k+1
— Hq« * Hwa
Hk,i = 5 (A-16)

The numerical procedure for solving the six unknowns at each timestep is to first compute water
surface elevations. With the new surface elevations, new horizontal velocities can be computed.
With new horizontal velocities, the vertical velocities can be found from continuity. New
congtituent concentrations are computed from the congtituent balance. Using new horizontal and
vertical velocities, the water surface elevation equation, can be solved for h simultaneously. The
solution for h is thus spatially implicit at the same time level and eliminates the surface gravity
wave speed criterion:

Dt < —2X (A-17)

79 H max

which can seriously limit timesteps in deep waterbodies.

Constituent Transport

Version 1.0 used upwind differencing in the constituent transport advective terms in which the cell
concentration immediately upstream of the velocity is used to calculate fluxes. A major problem
with upwind differencing is the introduction of numerical diffusion given by (for longitudinal
advection):
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uDX
a. = — (1-¢ (A-26)
2
where
a. = numerical diffusion

U Dt

c= ——

Dx

A dmilar condition holds for vertical advection. In many cases, numerical diffusion can
overwhelm physical diffusion producing inaccurate results when strong gradients are present. The
problem is particularly pronounced for stratified reservoirs and estuaries.

Numerical diffusion has been reduced by implementing an explicit, third-order accurate
QUICKEST horizontal/vertical transport scheme (Leonard, 1979), and time-weighted, implicit
vertical advection. Tests of this scheme are reported in Chapman and Cole (1992).

QUICKEST uses an additional spatial term to estimate concentrations used in computing
horizontal and vertical fluxes. A nonuniform grid QUICKEST scheme was developed using a
three-point Lagrangian interpolation function to estimate constituent values at grid cell interfaces.
Specifically, advective multipliers for each of three upstream weighted grid cells are derived in
terms of cell lengths and the local cell interface velocity. Time invariant parts of the interpolation
functions are cal culated once thus minimizing computations for additional constituents.

Implicit vertical transport including variable layer heights has also been implemented. Vertical
diffusion is fully implicit and advection employs a time-weighted, central difference, implicit
scheme. A unique feature of vertical advection, in the explicit part of the time-weighted scheme,
is QUICKEST which increases overall accuracy.

As implemented in the code, the new transport scheme is a two-part solution for constituent
concentrations at the new timestep. First, horizontal advection is computed using QUICKEST and
diffusion is computed using central differencing. This part also includes the explicit vertical
advection contribution (which utilizes QUICKEST) and all sources and sinks.

Next, the implicit part of vertical advection and diffusion are included. Diffusion is aways fully
implicit. The user can time-weight advection by specifying a value for [THETA] which varies
from O to 1. For [THETA] equal to O, the solution is explicit in time and vertical advection is
accounted for in the first part of the algorithm. For [THETA] equal to 1, the solution is fully
implicit in time and vertical advection is accounted for in this part of the algorithm. A Crank-
Nicholson scheme where vertical advection is time-weighted between the explicit (using
QUICKEST) and implicit parts resultsif [THETA] is set to 0.5. The following is a description of
the preferred transport scheme - QUICKEST.

Non-Uniform Grid QUICKEST Formulation. In one dimension, the conservative control
volume advective transport of a constituent F integrated over atimestep is:
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Dt
M= F'- —(U Fr - U FD (A-27)
Dx
where
Fi = congtituent concentration at agrid point
Fr = rightand left cell face constituent concentrations
U, = rightand left cell face velocity

t time

The QUICKEST agorithm was originaly derived using an upstream weighted quadratic
interpolation function defined over three uniformly spaced grid points. Thisinterpolation function
estimates cell face concentrations required by the conservative control volume transport scheme.
For example, the right cell face concentration estimate for aflow positive to theright is:

Fr = TaFiat TiFi + TiaFia (A-28)

where T are advective multipliers which weight the contribution of three adjacent grid point
concentrations.

The advective multipliers are obtained by collecting terms associated with each constituent
defined by the QUICKEST advection operator. For a non-uniform grid, a combination of two and
three point Lagrangian interpolation functions (Henrici, 1964) are used to compute the
QUICKEST estimate for the right cell face concentration centered about cellsi and i+1:

F=RW- 5 RO+ DO ¢ | DEUDYREY) 6o

where
x = thelocal right cell face position
D, = diffusion coefficient

Defining alocal coordinate system of three non-uniformly spaced grid cells denoted by x; 4, X;, and
Xi+1 With corresponding constituent values, the interpolation functions required in equation (A-27)
are:

_ (Xx) _ (Xi+1- X) _ 30
Pl(X) - (Xi+1'Xi) Foa ¥ (Xi+1'Xi) i o
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and

_ (%= xi)(X- Xia) _ (X- Xi+1) (X- Xi-1) _
A v e L i

(i = Xis) (Xi = Xi-0)

(A-31)

+ (X- Xis) (X- X1) =
i-1
(Xi-2 = Xis2) (X = Xi)
Taking the first derivative of Py(x) and the second derivative of P,(x) and substituting into
equation (A-27), it is then possible to group terms and obtain the advective multipliers. For
example, the Ti.; multiplier is:

X - x) ) UDt[(X - xi) + (x - Xi-l)]
(X1~ Xi) 2 (X~ xi) (X~ Xia)

T i+1 —
(A-32)

2 gb.Dt - % [ Dx? - (UDtY ]g

+

(Xi+1' Xi) (Xi+1' Xi-l)

Similar functions are obtained for T, and T;.; multipliers which completes the formulation for the
QUICKEST agorithm.

From a computational standpoint, most geometric components of the multipliers are time-invari ant
and are computed once and stored in arrays. The time-varying part of the multipliers (U, Dt, D)
are updated each timestep during computation of the T arrays. However, when the QUICKEST
scheme is applied vertically, the spatial part of the multipliersfor layers KT and KT+1 are updated
each timestep to accommodate the surface elevation fluctuation.

ULTIMATE QUICKEST Scheme

[To be added]

Vertical Implicit Transport. Focusing on vertical advective and diffusive transport, constit-
uent transport can be written:

1BF N TWBF -1 a;BDZEQ _ RHS (A-33)
It 1z

where RHS represents horizontal transport, and aII sources/sinks.  Integrating the transport
equation vertically and over timeyields:

® n+1 4

BH F™'+qH Dtd,(WB F™!)-HDtd, b, T =BH F° (A-34)

0
o
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where
F* = dlntimeleve horizontal and explicit vertical transport and sources/sinks
g = timeweighting for vertical advection, O if fully explicit, 0.55 if Crank-Nicholson,

and 1if fully implicit

Expanding the differential operators in terms of central differences and collecting terms, equation
(A-10) can be recast as.

AtiFirjIl-'- VtiFin+1+ CtiFiTll = D¢, (A-35)
where
- Dt Bbk,i & W Dzk,id
ti T - = (A-36)
BHki 2 H, 9
\/ti -1 + Dt %?\lﬁl BDki ) VV(—li B)k—],i? + B’IiDZKi + BDk—iDZk—],il:J (A-37)
B ¢ 2 g H Ha 0
C. =- Dt Bocii & Wi + Dzk-l,ig "8

BHui 2 Hia @

The coefficients are computed once, stored in arrays, and used to update each constituent. Thisis

accomplished by loading the explicit part of the solution, F*, with each successive constituent and
inverting the resulting matrix viaa Thomas tridiagonal solver.

Auxiliary Functions

Auxiliary functions are relationships that describe processes independent of basic hydrodynamic
and transport computational schemes in the model. Auxiliary functions include turbulent
dispersion and wind shear processes, heat exchange (including ice cover), evaporation, density
function, and selective withdrawal .

Shear Stress at Water Surface

The shear stress at the water surface is defined as

2 2
ts = CD ra(\M - us) @:D ra(\M)
where tg: surface shear stress at water surface
Us surface velocity in water
Wi, wind velocity measured at a distance h above water surface in direction of shear
Cp: drag coefficient
I, ar density
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Note that thisrelationship leads to the “ 3% rule” for surface currents:

t,=Cor (W, - u)’ :cDrWujg if C, ~C, . then u, ~003W,

S

ar water 3%rule

Usually the drag coefficient is afunction of the measurement height, h, above the water surface.
Mog drag coefficient formul ae have been determined based on a 10 m wind speed measurement
height. If wind speeds are taken at other measurement heights, for the shear stress calculation,
these should be corrected to 10 m.

The windspeed is afunction of measurement height. To correct the measurement height to an
elevation z, use the following approach:

Assuming alogarithmic boundary layer:

V4
w,_ ")
Wa (2

Vi

where  W,: desired wind speed at elevation z
W_1: known wind speed at height z
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Zo: wind roughness height (assume 0.003 ft for wind < 5 mph and 0.015 for wind > 5 mph,
range 0.0005 to 0.03 ft)

Thisterm can then be used to compute the surface stressin the direction of the x-axis and the
cross-shear (the cross-shear term will be used in the turbulent shear stress algorithm) as follows:

WX @Dra\MZCOS(Ql' Qz)
twy @CDra\thSin(Ql' Qz)

where  ty, surface shear stress along x-axis due to wind
twy: surface shear stress along lateral direction due to wind
Qq: wind orientation relative to North, radians
Q2: segment orientation relative to North, radians

North

n-1
W2 Segments

Segments oriented from
east to west have an angle of
p/2
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North

Hence, awind from the N would have an
angle of 0, awind from east to west would be p/2.

The drag coefficient, Cp, is defined in CE-QUAL-W2 as (note that these formulae were
determined based on a 10 m measurement height):

For W, <1 m/s, Cp =0.0
For 1£ Wy<15m/s, Cp = O.OOOS(Wh)O'5
For Wy2 15 m/s, Cp = 0.0026

Also, afetch correction to the wind velocity can be used as determined by Fang and Stefan (1994).
This correction is described in Appendix B under Dissolved Oxygen but is not applicable to rivers.

Shear Stress at Bottom Boundaries
The shear stressis defined along the bottom of each cell (or for each cell in contact with side walls
or channel bottom) as
r
tp=—23U|
C

where Cisthe Chezy friction coefficient
U isthelongitudina velocity
ry isthe density of water

Also, the model user can specify aManning's friction factor where the Chezy coefficient is related
to the Manning’ sfriction factor as

C (for Sl unitsonly)= (1/n)RY®

where n: Manning’ s friction factor
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R: hydraulic radius

InVersion 2 of CE-QUAL-W?2, the bottom shear stress was applied only to the bottom of each
layer. In the Version 3 model, the side-wall friction is accounted for because of its greater
importance in river systems.

The user can input either the Chezy of the Manning’ s coefficient for each model segment (whereas
in Version 2 one could only specify one value for the entire system).

Algorithm for ty,

The algorithm for the vertical shear stressis

e, W_, W
r ~ hurbulent ﬂZ - ﬂZ

In Version 3, the user must specify which algorithm to usefor A, or Nt . The algorithms are shown
below in Table 2.

Table 2. Vertical eddy viscosity, nt, formulations used with the Version 3
model.

Formulation Formula Reference
Nickuradse u _ Rodi (1993)
(NICK) n, :éinﬂ—em
z
é el zgu
¢, =H&.14-008d- 22 - 00681- =2
8 e Hg e Hagyp
I(DF?LaIQZIIIBC) n =ku, zg[- z 9e o Engelund (1976)
é Hg
W2 (used in - ) ok & Cole and Buchak
Version 2) n, :kgl‘m 9 geﬂug +g?Wye ‘:3 R (1995)
2 5efzg & rng
gm = Dzmax
W2 with 5 5 kg 2 Cole and Buchak
mixing n, i B0 gé[U 0, Fwe "2 (cri gggg; and Rod
Ie_ngthof éZBeﬂZﬂ é n, g
Nickuradse . , L &0
(W2N) 0, =H®.14- 008%- =2 - 006- 22
) e Hg e Hayp
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Formulation Formula Reference
RNG (re- 6 & 3 a2 Simoes (1998)
normaliza- n, :n§L+?93kaQu* - &- 29 U g

tion group) ¢ g n ;&€ Hg :

where /r,: mixing length, z: vertical coordiante, H: depth, u: horizontal velocity, Ri: Richardson number,
C: constant (assumed 0.15), u-: shear velocity, k von Karman constant, t,,,: cross-shear from wind, k:
wave number, r: liquid density, Dz, maximum vertical grid spacing, Y (xX)=max(0,x), n: molecular
viscosity, C;: empirical constant (assumed 100)

The model user can also specify the value of AZMAX (the maximum value of the vertical eddy
viscosity), but this value is only used with the W2N and W2 formulations. This value is specified
because the time step for numerical stability is greatly reduced when solving the momentum
equations using an explicit numerical technique. Also, the model user can choose whether to
compute the vertical momentum transfer with the longitudinal momentum equation using an
implicit (IMP) or an explicit (EXP) numerical technique. The explicit formulation was used in CE-
QUAL-W?2 Version 2 with afixed AZMAX of 1.0E-5 m?/s. Theimplicit solution code was
originally developed by Chapman and Cole and revised for Version 3.

Note that only the W2 and W2N include the effects of cross-shear from wind and from tributary or
branch inflows. Hence, it is recommended to use either W2 or W2N for waterbodies with deep
sections that could be stratified. The other formulations should be used for estuary or river systems
where the maximum computed AZMAX could be as high as 1 to 5 m?s. For the river model, the
model user should use the IMP solution technique. To reproduce resultsfrom Version 2ina
stratified reservoir, set AZMAX to 1E-5 m?s and the calculation technique to EXP using the W2
model.

How does know which turbulent closure scheme to use for t xz since according to Hamblin and
Salmon (1975) "the vertical diffusion of momentum is probably the most important internal
parameter” for predicting internal circulation patterns? Because of the "disarray in the literature”
over which formulation is best, Shanahan (1980) suggetsed that we "use theory and literature as a
guide to devel op aternative viscosity functions and then test those functionsin calibration runs
against field data." In the absence of expensive-to-obtain current velocity data, the use of
temperature profilesis often used to test the adequacy of the hydrodynamic regime against
different formulations.

Typical variation of these formulations, as predicted with the CE-QUAL-W2 mode, is shown in
Figure 28 for Manning's fiction factor and in Figure 29 for Chezy friction factor for an open-
channel, non-stratified flow regime. Comparison of the various turbulence closure theories to
classical open channel flow theory for 7 vertical layersis shown in Figure 30.

The next sections cover the background of the various expressions for A,.
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Manning's n=0.03, S=0.0001

NN
0 N X TSee
\ \ \K \,\ —6—PARAB

. FN x| Ad e
/ Ay / ——W2N

76 /
L —%—NICK
b R%’
72
70
0 0.05 0.1 0.15 0.2 0.25

Turbulent eddy viscosity, m2/s

Figure 28. Variation of turbulent vertical eddy viscosity for flow of 2574 m%s
flow down a channel of length 30 km with a slope of 0.0001 and width of 100
m at x=15 km and Manning's n=0.03.

Chezy=50 S=0.0001

:i SN X L S
0 N X N

| \ \F \9\ —6—PARAB
o L\ o ——rNG

78 / )‘X / ——Ww2
——W2N

76 / \

//x/ —K—NICK

74 ”\%

72

70
0 0.05 0.1 0.15 0.2 0.25

Turbulent eddy viscosity, m2/s

Figure 29. Variation of turbulent vertical eddy viscosity for flow of 2574 m®/s
flow down a channel of length 30 km with a slope of 0.0001 and width of 100
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m measured at x=15 km and Chezy C=50.

7 vertical layers, Manning's n=0.03 S=0.0001

90

88

86

A
84 A ——PARAB
/4

E 82 \ —=—RNG
) —D—\W2
= 80
g 4 W2N
578 —%—NICK

76 =®=Theory

74

79 .r’ N

70 T

0 0.5 1 1.5 2 2.5
Current Velocity, m/s

Figure 30. Comparison of vertical velocity predictions of W2 model with
various eddy viscosity models compared to theory.

W2 Model
In CE-QUAL-W2, this shear stress term includes also the contribution to the shear stress from

surface waves induced by the wind. The wind can produce waves that produce decaying motions
with depth as shown below.

wind stress

>

SO CH
SO
SO
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Thetotal longitudinal shear stressfor alayer isdefined in W2 as having contributions from
interfacial velocity shear, wind wave generated shear, and friction shear along boundaries:

o o, MUt e b
r 9z r r

wheret, isthe longitudinal wind shear at the surface (see above)

4p°

gl

w

k= wave number =

Tw= wind wave period (empirical) = 6.95E - 2 FO'Z?’3|V\/|0'534
F= fetch length, m.

Determination of A,

The turbulent eddy viscosity was conceptualized by Prandtl as

0 _ 23y du
dz

turbulent

where ¢ is defined as the mixing length and can be interpreted as being proportional to the average
size of large eddies or the length scale of aturbulent eddy. Thislength isafunction of distance
from aboundary or wall since the eddy sizes vary as afunction of distance from aboundary. The
goal in most turbulence modelsis the determination of the mixing length as a function of position
in the fluid.

Because the above concept is not firmly grounded in theory, there have been many published
formulations (many widely varying) for determination of A, in the literature (see for example,
Shanahan and Harleman, 1982).

In the formulation in CE-QUAL-W2, the mechanism for transporting the wind stress on the
surfaceis based on

|2 U o Vo VR
A,= vertical eddy viscosity = K — %1 aé[ g e®
2 4 ‘ﬂzﬂ ‘ﬂzﬂ Q

Ri: Richardson number =
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k is the von Karman constant = 0.4
C is an empirical constant taken as 1.5

I, a vertical length scale, is chosen as vertical cell thickness.

Hence, thisformulation is atypical mixing length formulation that is decreased or increased based
on the Richardson number. The Richardson number accounts for the impact of density
stratification on transfer of momentum between fluid parcels. In regions where there is no
stratification, Ri=0, and the exponential term is 1. For regions where thereis strong stratification

dr
(oras — ® ¥ ), the Richardson number becomes large and the exponential term approaches 0.

dz

Theterm in the above formulation involving the lateral velocity because even winds blowing at
right angles to the model cell may not cause any longitudinal velocity, but they will create a
mechanism for increasing the transfer of stress vertically in the fluid.

In the longitudinal-vertical model, the lateral velocity, V, and its gradient, fV/{z, are due to the
lateral component of wind wave motion and are assumed to be zero when averaged laterally, but
not necessarily the square (TV/z)% It is assumed that cross wind shear twy generates lateral wave
components and decays exponentially with depth, z, such that

tye=tuy &Xp(-2k2)

where t,y isthe lateral wind shear at the surface (see above).

Thenusing
e, IV
r 9z

The lateral velocity gradient squared becomes

AVe e, exp(-2ka) i
8126 “§ A,

Thefinal equation for the vertical eddy viscosity isthen

O

220 |od[UGE a2’

—_— ('CRi)
§25|€q20 € rA, 50

A, =K

The above equation is implicit. In the model, this equation is explicit since the value of A; in the
lateral wind shear term is used from the previous time step. A, is never less than the molecular
kinematic viscosity for water.
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RNG Turbulent Eddy Viscosity Model

The RNG model was derived from the RNG model of Yakhot and Orszag (1986) by Simoes
(1998). The turbulent eddy viscosityis derived from Y akhot and Orzag (1986) as

1/3
é = et o))
n, =ngl+Y gaﬂl% - G
é ’ a0

where Y (X)=max(0,x)
n: molecular viscosity
nt: turbulent eddy viscosity

gm : mixing length

e: turbulent energy dissipation rate
al; constant approximately 1

C1: constant approximately 100

Two additional equations are necessary to determine the mixing length and the turbulent energy
dissipation. These are

fno 2 1. 2
Mixing length H H H
3/2
eH _3z g-i Z0
ol —=
Turbulent Eddy Dissipation % 1€ Ho
Where k isvon Karman's constant (=0.41)
Substituting these into the equation for nt,
_\1/3
azu, 0 z
_ne1+Yga< x -ﬁo clu
n = s
€ & 2 g 4

Simoes (1998) states that this model better represents experimental data than the more traditional
parabolic eddy viscosity model of

He

A value of n was derived for this project as a function of temperature. Based on values from
Batchelor (1966), a polynomial curve fit between 0 and 30°C as shown in Figure 31.
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This model was adjusted by the author to account for stratified flow conditions by using the same
Richardson number criteriaas used in the original W2 model (the approach of Mamayev as quoted
in French, 1985), i.e,,

— - CRi
nt - max(n ’ntRNGe )
qr
g 1z
24U 6°
"4z 5
Ri: Richardson number = Tz

C isan empirical constant taken as 1.5 (Note that French, 1985, shows that this constant has been
used as 0.4 also.)

The Richardson number accounts for the impact of density stratification on transfer of momentum
between fluid parcels. In regions where there is no stratification, Ri=0, and the exponential term is

dr
—® ¥
1. For regions where there is strong dtratification (or as dz ), the Richardson number
becomes large and the exponential term approaches 0.
50 — Fit 5: Log, Y=B*log(X)+A
Equation:

Y =-57.7621 * log(X) + -782.19

Number of data points used = 2

Average log(X) = -14.3206

Average Y =45

Regression sum of squares = 50

40 — Residual sum of squares = 1.55389E-010
Coef of determination, R-squared = 1

Fit Results

N Fit4: Log, Y=B*log(X)+A
Equation:
Y =-37.3877 * log(X) + -495.691
— Number of data points used = 5
Average log(X) = -13.6059
Average Y =13
Regression sum of squares = 577.303
20 — 5 Residual sum of squares = 2.69662
Coef of determination, R-squared = 0.995351
Residual mean square, sigma-hat-sq'd = 0.898872

Temperature, C

10 —

0 T I T

4E-7 8E-7 1.2E-6 1.6E-6 2E-6
Kinematic viscosity, m2/s

Figure 31. Variation of molecular viscosity with temperature.

Nikuradse Model
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This model, as noted in Rodi (1993), is a mixing length model where the mixing length /., and
eddy viscosity n; were determined from

n, =€fnﬂ—u
1z
é 2 & 2 &'
0, =H®.14- 008F- 22 . 0068- 22
8 e Hg e Haog

Thisresultsin avertica distribution for the mixing length as shown in Figure 32.

Mixing Length Distribution
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Figure 32. Mixing length as a function of depth for the Nikuradse
formulation.

The stability of the water mlumn affects the mixing length. A Richardson number criteria has
been applied to correct the mixing length for stability effects such as

1- 7Ri) if Ri3 0
(- 7Ri)
(1- 14Ri))°® if Ri<0

/e m /e mo
/g m /g mo
This is a little different from the approach of Munk and Anderson (1948) where the Richardson
number correction was applied to the value of A, not the mixing length directly.

In order to be compatible with the original formulation in W2, the computed value of A, was
corrected using the Mamayev formulation, i.e.,
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nt = maXG"l ’ntNICK e - )

Parabolic Model

Another distribution is the parabolic distribution of A, (Engelund, 1978) such as

nt:ku*zgi

.z
e H

Q O

Figure 33 shows the spatial distribution of A, for the parabolic model.

Vertical Eddy Viscosity Distribution
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Figure 33. Variation of A, with depth for the parabolic model of Englund
(1976).

In order to be compatible with the original formulation in W2, the computed value of A, was
corrected also using the Mamayev formulation:

n, = max(n,ntPARABe' CF“)
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W2N Model

The W2N model is the above W2 model, except that the mixing length is no longer the thickness

of the vertical layer, but is computed using Nickaradse' model for mixing length. Hence, the final
equations for the W2N formulation are

o 2
A=k @UQZ@WVG_ME e eR)
2 leflzg é rA, 4
A Z..2 7 "4l:|
¢, =H&®.14- 0088 =2 . 00681 =2
& e Hg e Hagg

Effect on Number of Vertical Layers on Model Hydraulic Predictions

In contrast to other riverine models that assume vertically well-mixed systems, the Version 3
model accounts for the vertical variation of velocity in ariverine reach. Even though thereisan
added computational burden of computing the 2-D velocity profile, the advantage of making this
computation isthat the friction factor (Manning's or Chezy) for a segment can be flow or stage
invariant depending on the number of vertical layers schematized.

Many one-dimensional hydraulic flow models, such as CE-QUAL-RIV1 and UNET (Barkau,
1997), allow the model user to specify how Manning’ s friction factor changes with depth. The
Mannning’s friction factor, n, has been thought to vary as a function of depth, Reynolds number,
roughness factor (or scale of bed grain size) (Ugarte and Madrid, 1994; Soong, DePue, and
Anderson, 1995). Some of these formulations for variation of Manning's friction factor with
hydraulic radius, R, are shown below Figure 34 and in the equations bel ow:

Jarrett(1984):
n=0.39S"*R *%*

Limerinos(1970) :
0.0926R"°

- ®R 0
1.16+2Ioggd£i
84 O

where Sisthe channel slope and dg, is the 84-th pecentile diameter of the bed material.
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—o— Limerinos (1970)
—&— Jarrett (1984)

Hydraulic radius, ft
N

NN

0.02 0.03 0.04 0.05 0.06 0.07

Manning's friction factor

Figure 34. Variation of Manning'sfriction factor using formulae from
Limerinos (1970) and Jarrett (1984) for S=0.0005 and dgs=50.

Researchers understand that the friction factor, when representing a hydraulic element with
uniform roughness, should be flow invariant with depth (Henderson 1966). But many assert that
the friction factor changes with depth because the friction coefficient is variable with the wetted
perimeter. Some reason that it isto be expected that at shallow depths the larger size of the bed
material produces a higher overall friction factor than a deeper flow where the side walls may have
asmaller friction.

Since most researchers used 1-D cross-sectionally averaged flow equations (such as Manning's
Equation, or 1-D dynamic hydraulic models), this parameterization itself has been responsible for
the seeming variation of Manning’ s friction factor with depth. For example, all one-dimensional
hydraulic modelsimplicitly assume that the rate of transfer of momentum from the bottom of the
channel to the top isinfinite. For these hydraulic models, even as the depth of the channel
increases, these models still assume an infinite rate of transfer of momentum from the channel
bottom to the surface. Hence, as the water depth increases, the apparent friction factor must be
reduced because of the assumption of infinite momentum transfer between the bed and the water
surface.

But, ina2-D (vertical-longitudina) river model, the Manning's friction factor does not have to be
varied with stage in order to produce the effect that as the river stage increases, the apparent
friction decreases. The water surface set-up changes significantly asthe layer numbersincrease. In
general, the water surface slope increases as the number of computational layers decreases. In
other words, the average eddy viscosity in the water column increases as the number of layers
decrease until at the limit of a one-layer system, the average vertical eddy viscosity isinfinite. The
fact that the Manning’ s friction factor seems to decrease with depth in 1-D modelsis accounted for
in modeling the river channel asa 2-D (vertical-longitudinal) system.
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CE-QUAL-W?2 Version 3 usesfive different vertical eddy viscosity formulations. These
formulations were shown earlier in Table 2.

Typica variation of these formulations, as predicted with the CE-QUAL-W2 model, was shown in
Figure 30 for Manning's fiction factor for an open-channel, non-stratified flow regime as
compared to theory of steady uniform channel flow.

The number of vertical layers significantly affected the model predictions. For example, Figure 35
shows a comparison of vertical velocity profiles from amodel with 1, 3 and 7 vertical layersusing
the PARAB eddy viscosity model.

S=0.001, Q=2574 m3/s, n=0.03, PARAB
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Figure 35. Comparison of vertical velocity predictions of W2 model with 1, 3
and 7 vertical layers

Figure 36 shows how the change in the number of vertical layers affects the water surface slope
over the domain length for a steady-state flow. In order to model the water surface slope of the 1-
layer model with the 7-layer model, the apparent value of Manning's friction factor would have to
be reduced. Hence, the apparent friction decreases as the number of layersincrease.
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CE-QUAL-W?2 V3 was aso compared to the 1-D models DYNHY D (Ambrose et al., 1988) and
CE-QUAL-RIV1 (Environmental Laboratory, 1995) by running W2 with only asingle vertical

layer.

Q=2574 m3/s, S=0.0001, n=0.03
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Figure 36. Comparison of elevation drop of W2 model with 1, 3and 7 vertical
layer swith same Manning'sfriction factor.

The average velocities between the 3 models agreed well with theory but the water surface slopes
were different. The W2 model predicted an elevation difference of 2.93 m, compared to 2.07 m for
DYNHYD and 2.05 m for RIV1 over 30 km for a Q=2574 m3/s, n=0.03, S=0.001, and channel
width=100 m. Based on classical steady- state theory, the actual difference should have been 2.9
m. Both the DYNHY D and RIV 1 models required friction factors greater than expected to
correspond to classical theory. This may have been aresult of these models not incorporating side-
wall friction which was important during these test runs where the depth was 15 m and the width
was 100 m.
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Algorithm for t

The longitudinal turbulent shear stressis defined as

ty U _ U
- nturbulent W - W

where Ay =nyrhuent aNd iSthe longitudinal turbulent viscosity or the longitudinal eddy viscosity.
A, isauser-defined constant in the model.

This turbulence closure approximation is termed a zero-order closure model since no further
equations are necessary to solve for the transmission of shear stress within the fluid.

Thisterm isusually of very low magnitude except in areas near boundaries, like at the face of a
dam where the longitudinal velocity goes to zero.

Internal hydraulic structures algorithm (pipes, culverts)

The model user can now specify a pipe or culvert between model segments. This mode is based
on work performed by Berger and Wells (1999). The Version 3 W2 model hasa 1-D, unsteady
hydraulic submodel that computes the flow between the 2 linked segments. The model computes
the selective withdrawal (see section on selective withdrawal) from the upstream segment, and the
model user specifies whether the inflow to the downstream segment is treated as mixed over the
depth, inflow depth determined from inflow density, or specified between an upper and lower
elevation (see section on inflows). The flow between an upstream segment and a downstream
segment is shown in Figure 38.

[ ] Downstream
Upstream ] Branch

v_

\ CE-QUAL-W2 /
Model Cells

Figure 37. Schematic of linkage of model segmentswith a culvert.

Thismodel is only appropriate for simple piping systems that are not suddenly under alarge
hydraulic head. The governing equations for computing the flow and the numerical solution
technique are shown are shown below.
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The governing equations used to predict flow through culverts were the one-dimensional time-
dependent conservation of momentum and continuity equations (Y en, 1973).

fu, Tu fih
—+u—+gcosf —- g|S, - S, - =0
ﬂt ﬂX g ﬂX g( (o} f Sm)
ﬂ—h+uﬂ—h +ém—0
qt ™ T9x
where
u - velocity
t-time

h — piezometric head

g - gravitational acceleration

X - distance along axis of culvert

A - cross-sectional area of culvert filled with water
T - width of water level surface

f - angle between culvert axis and horizontal
S, - culvert slope
S; - friction slope.

S, - minor loss slope

Thefriction slope Sf was estimated with the Manning formula

S =g\

N - Mannings roughness factor
R - hydraulic radius.

Minor losses due to entrance configuration, gates, valves, and corners were accounted for in the

minor lossterm S, where
uju
Sm = kﬂi
29 L

and

K - sum of minor loss coefficients
L - length.

Pressurized or full culvert flow was modeled assuming afictitious water surface width called a
Preissmann dot (Yen, 1986). If the culvert wasfull, the surface width T was zero and the
governing equations became singular. Using a Preissmann slot avoided having to switch between
the open channel and pressurized flow equations. The slot must be narrow enough to minimize
error in the mass and momentum balance but large enough to maintain numerical stability when
solving the open channel St. Venant equations. A top width of 0.5% of the diameter was assumed
for culverts flowing full.

The advantages of using a Preissmann slot were quoted in Y en (1986):
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(a) It usesonly Saint-Venant equations and avoids switching between the surcharge equation
and open-channel flow equations and avoids the associated separ ate treatment of the
boundary conditions.

(b) Thereisno need to define surcharge criteria

(c) Itisnot necessary to keep inventory of the pipesthat are surcharged at different times.

(d) It permitsthe flow transition to progress computationally reach by reach in a sewer, asin
the open-channel case, and hence it can account for the situation when only part of the
length of the pipeisfull.

(e) Itrequiresfew additional assumptions than the standard approach to achieve numerical
stability

(f) Itissimpler in programming.

along with the some potential disadvantages:

(a) Itintroducesa potential accuracy problem in the mass and momentum balance of the
flow if the dlot istoo wide, and stability problemsif it istoo narrow.

(b) It sill requires computation of two equations (continuity and momentum) for each of the
reaches of the sewer when the sewer isfull surcharged, whereas in the standard
surcharge computation only one equation is applied to the entire length of the sewer

(o) Itishypothetical rather than real.

The Preissmann slot concept has been applied to other models for surcharged flow including the
mode! described by Abbot (1982) and SWMM EXTRAN (Roesner et al. 1988).

The boundary condition used for solving the governing equations was the head or water level at
each end of the culvert. However, if the water level at the downstream end of the culvert was less
than the critical depth, the critical depth was used. Momentum was not transferred between CE-
QUAL-W2 model segments and the culverts. Initial conditions were the calculated vel ocities and
heads of the previoustime step.

The governing equations cannot be solved analytically and an implicit finite difference scheme
was used to approximate the solution. The solution method employed the “leap-frog scheme”
which calculates the head and velocity at alternating computational nodes. The finite difference
forms of the continuity and momentum equations were

hn+l hn hn+l _ hml hn _ hn A’n uml _ un+l A’n un _ un
n 2 -2 n' 2 ]-2 j+l j-1 j+L -1 _
——— QU ————+(1- q)u; — +Q-)-——=0

O 2x X T X T X
THARETH D:l -uMt u, - ul _n:l - hntt n n
———+quj, = +(1-c1)uj"+l Ui g Mt VL g gy Mz 0 L

n? u™ly 1- un |+ K na 1- =0
g R% ]+l ]+l ( q)g / ]+l ]+l q Lu1+1 ]+l ( q) u]+1 ]+l

where the n-index references time step and the j subscript references the spatial node.

Figure 38 compares flow predictions using the dynamic culvert model with flow data taken within
aculvert at NE 47" bridge in the Upper Columbia Slough, Portland, Oregon. Datawas recorded
by aflow meter (Flow-Tote) placed directly in aculvert. The cyclical flows are the result of
turning pumps on and off at MCDD#1, a downstream pump station. The culvert was calibrated by
adjusting the minor |oss parameter.
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Figure 38. Comparison of model predictions and data using dynamic culvert model. The flow
cycling was due to turning pumps on and off at MCDD#1. The culvert being simulated is located
aong the southern arm of the slough at NE 47",

Culvert input parameters required by the model were diameter, length, invert devations, Mannings
friction coefficient, and a minor loss coefficient.

Internal Weirs

The Version 3 model can be used to set internal weirs at specified cell locations. The user specifies
the location of the internal weir by providing a segment and layer number. The weir effectively
acts asabarrier to flow and diffusion of mass/heat across the width of the waterbody as shownin
Figure 39. This can be used to simulate submerged curtain weirs within a stratified reservoir. Note
that in specifying the internal weir, the right hand face of the segment/layer specified isthe barrier
to flow and diffusion.

Water Level Control

Many times, outflows in reservoirs are controlled by water levels. In order to facilitate
management of the water body, awater level control algorithm was added to the code. Essentially,
thisis a pump based on afloat position controller.

This allows the model user to specify the upstream and downstream (if any) segment for water to
be transferred at a given flow rate based on the water level at the upstream segment. Reverse flow
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is not alowed through this system. The withdrawal is treated as alateral selective withdrawal and
the segment that receives the inflow istreated as a tributary.

Segment# —— * Dam

Layer# |
! !
Tt
= Outflow
v Internal weir

(on right side of segment)

Figure 39. Schematic of specification of an internal weir.

External hydraulic structures algorithms (spillways, weirs, tainter gates)

CE-QUAL-W?2 Version 3 also has the capability to predict outflow from adam or hydraulic
structure that contains aweir or spillway as shown in Figure 40. In Version 2 of CE-QUAL-W2,
the model user had to specify all known flow rates from adam in an outflow file. The Version 2
model was unable to predict flow through a hydraulic structure. Version 3 can either used
specified outflows (asin Version 2), or can have the model automatically compute the flows based
on user-supplied rating curves.

This section will review how other models have devel oped algorithms for incorporating weirs and

spillways, review the theory of weir flow, and show the algorithm implemented in CE-QUAL-W?2
Version 3.
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Tainter gate Spillway/weir

[ E

Figure40. Tainter gate and spillway flow.

The UNET model (HEC, 1997a), a one-dimensional unsteady hydraulic model, formally accounts
for spillway flow from weirs and spillways. For free or submerged flow from a spillway with a
tainter gate, UNET uses a genera equation such as

Qsgitiway = CWA*B°H"

where Qginway iSthe flow rate, A isthe trunnion height, B is the gate opening, C is an empirical
coefficient, W isthe gate width, H = Zu - KZd - (]_- K)Zsp,zuistheheadwater

elevation, Z; isthe tailwater elevation, K=1 for submerged flow and O for free flow, Zs, isthe
spillway elevation and a, b, and h are empirical coefficients. This equation was developed based
on rating curves for hydraulic control structuresin Arizona. Submergence was defined whenever

Zy-Z .

Ldm L9 2
Z,- Zg 3

Weir flow was computed (and when the gate no longer controlled the flow which was assumed to

occur whenever B=0.8H) as

— /
Qweir _CWFW((]-' K)Zu + sz - ZSp)H1 ’
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where C,, isthe weir coefficient, F= ai Z, - ZS|O Qwhen K=1; and F=1 when K=0. For a
Z,- Zg E

concrete spillway HEC (1997a) suggests using avalue of C,, of 4. Note that the above 2 equations

are considered equivalent whenever B=0.8H.

The steady-one-dimensional steady-state hydraulic model, HEC-RAS (HEC, 1997b), includes the
capability to model the flow over spillways, including gated spillways (tainter gates and sluice
gates), broad-crested weirs, or an ogee crest. Ineffective flow areais used to block a part of the
channel until it reachesthe level of a spillway or weir.

A summary of the equations used by HEC-RAS as well as explanations are shown in Table 3.

Table3. HEC-RAS (HEC, 1997b) flow ratesthrough weirs and sluice gates.

Condition Equation Description

Radial flow Q =C./2gWT ™EBP5H HE | When the upstream water surface is 3 125 timesthe
gate, flowing gate opening height (above the spillway crest), Q isthe
freely flow in cfs, C is discharge coefficient (between 0.6 and

0.8), W isthe width of the gated spillway in ft, T isthe
trunnion height (from spillway crest to trunnion pivot
point) in ft, B height of gate opening in ft, H isthe
upstream energy head above spillway crest Z,-Zsp, Z, is
the elevation of the upstream energy gradeline, Zyis
the downstream water surface, Zs, is the elevation of
the spillway crest, TE is an empirical trunnion height
exponent (0.16), BE is the gate opening coefficient
(0.72) and HE is the head exponent (0.62).

radial gate Q =3C./2gWT EBBEH HE | When the upstream water surface is 3 1.25timesthe

flowing under gate opening height (above the spillway crest),

submerged whenever the tailwater depth divided by the energy

conditions depth above the spillway is greater than 0.67, H is now
defined as Z,-Z4

fredly flowing Q=C,/2gHWB When the upstream water surfaceis > 1.25 timesthe

sluice gate gate opening height (above the spillway crest), H isthe

upstream energy head above the spillway = Z,-Zs,, and
Cisadischarge coefficient (0.5t0 0.7)

submerged Q=3C /ngV\B When the upstream water surfaceis S 1.25 times the

sluice gate gate opening height (above the spillway crest),
whenever the tailwater depth divided by the energy
depth above the spillway is greater than 0.67, H is Z;-

Z4
Low flow Q =CLH 3/2 When upstream water level isequal to or lessthan the
through gated - top of the gate opening, weir flow equationis used, C
structure isthe weir coefficient and ranges from 2.6 to 4.0

depending on broad crested or Ogee spillway, length of
spillway crest, H is the upstream energy head above the
spillway crest, for an Ogee spillway thevalue of Cis
adjusted according to a 1977 Bureau of Reclamation
study on variahility of C for Ogee spillways, suggested
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Condition Equation Description

values of C are 2.6 for bridge decks and 3.0 for flow
over elevated roadways

Flow over Weirs

Andysis of flow over weirs has been studied extensively. Martin and M cCutcheon (1999) show
that atypical relationship between the pool depth and flow over awelir is

Q = CGWC h\l;]\l

where C, and h are empirical coefficients, W, isthe length of the weir crest and h,, is the height of
the pool above the weir crest. Theoretical calculations of steady-state flow over aweir can be
complex depending on whether the weirs are sharp-crested, broad-crested, V-notched, rectangular,
Cipolletti, parabolic, or some other type. Table 4 shows some examples from French (1985) and
USBR (1999) on typical equations used for the different weir types. For many regular weir types,
formulae exist for accurate estimation of the flow. But in most cases, arating curve for agiven
installation is necessary beacuase of the uncertainty of end effects, flow alignments, shallowness
in the upstream pool, and other unique features of the installation (Martin and M cCutcheon, 1999).

Table4. List of weir types (after French, 1985, and USBR, 1999)

Weir type Weir Equation Description

Rectangular 2 [2 32 Valid when 0.08 <H/L<0.5 where H; is the

broad crested Q=CyC, =,/-oWh, total head upstream of the weir (energy +

weir 313 static head) and L is the length of the weir
block, W is the width of the rectangular weir
from edge to edge, C, variesfrom 1to 1.2 and
Cp variesfrom 0.85 to 1.06

Rectangular, Olson and Wright (1990) show that C,

sharp crested Q=C, Z JZ_g Bl’f/ 2 depends on the approach velocity head, V?/2g

weir 3 and the contraction of streamlines just beyond
the weir crest and show that C, is of the form:
C=0.611+0.075* (H/Z) where H isthe weir
head and Z isthe weir crest head (as measured
from the bottom of a channel); Clay (1995)
suggests a simple equation of Q=3.33BH¥of
this form when approach velocities are less
than 1 fps or Q=3.33B[(H+h)¥*-h,*?] where
h,=V?/2g and V is the approach velocity

Paraboalic, 3 f isthe distance from the bottom point of the

broad-crested Q=C.C, Z fghl2 waeir to the weir focal point

Parabolic,

daporesed | Q=C,Zp/Toh?

Triangular, Thetais the angle of half of the triangular weir

broad-crested | Q=C,C, ]2'—2 é g tan(0.5Q)h> 2
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Weir type Weir Equation Description

Triangular, 8 5/2 Ccisafunction of notch angle and variesfrom

sharp-crested Q=C, o5 A/ 29 tan(0.5Q)h; 0.59 to 0.57 for angles between 20 and 100
degrees

Trapezoidal, =C(Tv. +mvA2aq(H. - 1/2 | T isthetop width, misthe dope, y; isthe

broad-crested Q=Co (Tye +my2)[29(H; - o)l water surface elevation at the weir, H1 isthe
energy head upstream of the spillway

Trapezoidal, 2 4 12 | Thetaisthe angle of the trapezoid at a

shapcrested | Q=Ce 3V 29 (b+ c hy tan0.5Q)hy™“ | convergence point of the 2 sides

Truncated 2 2 32 When H; > 1.25H,, otherwise use equation for

triangular, Q=C,C, 33 gT(h, - 0.5H,) broad crested triangular weir, Hj, is the depth

broad-crested from the bottom of the truncated triangular
weir to the top of thetriangle and the
beginning of the rectangular section

Truncated _ 4 T , 55 25, | When Hy > Hy, otherwise use equation for

triangular, Q‘CeE\/EH_b(hl - (- Hp)™) sharp crested triangular weir

sharp-crested

Cipoletti A modification of the contracted, rectangular,

Q=CoC, 5:/2g0"

sharp-crested weir with atrapezoidal control
section and sides sloping outward with slopes
of 4:1; Co@.63 and C, variesfrom 1to 1.2
and isafunction of Cp and theratio of area
upstream of the control section and at the
control section

Proportional or
sutro weir

Q=Cpby/2ga(h, - %a)

Where aisthe height of the rectangular
portion of the weir above the base, and b isthe
width of the bottom of the sutro weir, Cp
variesfrom 0.597 to 0.619 for symmetrical
Sutro weir and between 0.625 and 0.603 for
unsymmetrical Sutro weir

CE-QUAL-W2 Version 3 Implementation

Since all weirsin practice are calibrated and a head discharge relationship is usually determined,
CE-QUAL-W?2 accepts only the Q vs H relationship rather than an equation from Table 4. The
model user then must analyze the weir or spillway and input a relationship based on the weir or
spillway geometry. The model accepts equations in the form of a power function:

Q= allihbl for freely flowing conditions

where a,, by are empirical parameters and Dh is Z,-Zp, Z,, is the upstream head, and Zs, isthe
spillway crest elevation

and
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Q=a 2[11 b2 for submerged conditions

where a,, b, are empirical parameters and Dh is Z,-Z4, Z,, is the upstream head, and Z; isthe
downstream head. Submerged conditions are defined as whenever the tailwater depth over the
upstream energy head (static head and velocity head) is greater than 0.67 (HEC, 1997b). Even
though negative flow rates are possible using the second equation whenever Zs>7,, , these results
should be used with caution since rarely are ratings curve done for reverse flow over a spillway.
The model user needs to insure that there is a smooth transition between submerged flow
conditions and free flowing conditions by proper choice of model coefficients. This means that
calculations should be made to show that at the transition from free flowing to submerged flow
conditions there is arelatively smooth flow transition. Thisisillustrated in Figure 41.
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Figure4l. Flow rate over a spillway or weir for submerged and free flow
conditions.

These equations above are only for uncontrolled weirs without gates.

For a gated structure or sluice gate, a more complex rating curve is required based on the opening
of the gate or sluice and the head difference between the upstream and downstream condition (the
spillway crest if free flow and the tailwater elevation if submerged flow).

For afreely flowing condition, CE-QUAL-W2 uses the following equation:
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Q :athbl BIL
and
Q :azmbz B92

for a submerged condition, wherea, by, au, a», b, , @ are empirical parameters and Dh for the
freely flowing conditionisis Z,-Zs,, Z, is the upstream head, Zs, is the spillway crest elevation,
and for the submerged condition is Z-Zg4, Z4 is the downstream head, and B is the opening of the
gate in m. In defining these parameters, the model user also has to generate atime-seriesfile
showing the opening of the gate(s) in mwhereaB of 0 mis closed. Whenever B isequal to or
greater than 0.8Dh, aweir equation is used with no functional dependency on B. in this case, the
model user also supplies arating curve when the gates act like aweir. Figure 42 shows the flow
rate dependence on the gate opening.
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Figure 42. Variation of flow rate with gate opening.

In some reservoir systems, a outlet valve is connected to the reservoir and a head-discharge
relationship is used based on opening of the gate or number of turns of the gate. In this case the
outlet level isusualy at adifferent elevation than the withdrawal elevation. The above gate
formulation can still be used if there will not be reverse flow through the needle valve. This
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situation isillustrated in Figure 43. In this case, the elevation of the outflow isrequired in addition
to the elevation at which the outflow istaken if arating curve is used in the model. The use of this
is described in the section on changes to the control file. W2 currently does not have the ability to

\V4

Selective
withdrawal

Gatevalve

decide the distribution of outflows if more than one selective withdrawal gate is open.

Figure 43. Selective withdrawal with outflow connected to a valve with a
gate.

The model user can insert weirs and/or spillways, specify connectivity to other model segments,
and insert the ratings curve parameters for each weir/spillway. The model treats each spillway or
welr or gate as a selective withdrawal outflow and uses the selective withdrawal agorithm for
determining water flow from each vertical layer adjacent to the structure. Inflows from hydraulic
control structures are treated as tributary inflows where the user must specify whether theinflow is
placed according to density, equally distributed between all vertical layers, or distributed between
agiven elevation range.

If avalverating curveisused asa"gate" and the outlet elevation to compute the head differenceis
not the same at the withdrawal elevation the following changes are made above.

The section “GATE WEIR” present weir equations used when the gates are open and the open
gate does not interfere with the flow and hence weir flow is assumed through the gates (when

B3 0.8Dh).
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Conservation of longitudinal momentum at branch intersections

Version 3 alows the conservation of longitudinal momentum at branch intersections (see Figure
44). The model user does not need to account for this explicitly since thisis done automatically in
the code. The vector component of velocity in the xdirection of the main channel, U, can be
computed by analysis of the channel orientations. This component in the xdirection would be:
Uy=Ucosb where U is the longitudinal velocity of the tributary at the downstream segment that
intersects the main branch and b is the difference in the angle between the main stem and tributary

segments.
f N

A2 i butary

Figure 44. Schematic of branch connection.

The conservation of momentum about a control volume, the main stem segment, would result in
an additional source of momentum. Lai (1986) shows that the correction to the xmomentum
equation would be:

qBU,
where g isthe lateral inflow per unit length.

This arises from re-deriving the momentum equations and assuming that all the fluid (g) entering
the segment is moving at the velocity Uy. This correction to the Xx-momentum equation would be

B B WuUB h B2
1V + 1Y + TWUB gBsina +gcosaBﬂ—- geosas oﬂLdz+
it x 1z X r Jix
19B 19B
- ﬂ t XX + = ﬂ t Xz + qBU )
rfx r 9z —
momentum from side tributaries
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Increased vertical mixing from lateral inflows

Wells (1997) proposed accounting for the cross-shear as aresult of the y component of the
velocity of aside branch in the computation of the vertical eddy viscosity (and as aresult the
vertical diffusivity). Thiswas implemented by increasing the cross-shear velocity gradient. In W2
Version 2 wind shear across the lateral axis of a segment also increased the vertical mixing by
affecting the computation of A,. Analogous to the shear from wind, an additional side shear was
implemented in the calculation of A, the vertical eddy diffusivity coefficient, in Version 3 as
follows:

,2 -2k 2
A :k (i:é-l‘ U 9 +% Wye z +t y[ributaryg e(_CRi)
z _
eflizg rA, p
t fi U 2
ytributary @f aQ -y . ) ] o
where 8 , fi isan interfacial friction factor (about 0.01)
o]
_ a Qiny
Y DzDx

é Qiny = |.U ybranchDZBJ + lé Qtributaries_'

Upranchy =UbranchSIN(Qrmein-Qbranch)
Dz isthe layer height of the receiving segment's layer
B isthe layer width of the receiving segment's layer

Dx isthe longitudinal spacing of the cell in the main branch receiving the inflow
Qurributaries 1S the flow rate of tributaries (assumed to be at right angles to the main channel).

This side shear effect is only computed when the vertical mixing agorithm chosen by the user is
W2 or W2N.

Heat Budget

Surface Heat Exchange. Surface heat exchange can be formulated as a term by-term process
using the explicit adjacent cell transport computation as long as the integration timestep is shorter
than or equal to the frequency of the meteorological data. Surface heat exchange processes
depending on water surface temperatures are computed using previous timestep data and are
therefore lagged from transport processes by the integration timestep.

Term-by-term surface heat exchange is computed as:
Hn = Hs + Ha+He+Hc'(Hsr+Har+Hbr) (A-46)
where

the net rate of heat exchange across the water surface, W m2

Hs = incident short wave solar radiation, W n?
H. = incident longwaveradiation, W m?
Hy = reflected short wave solar radiation, Wm?
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Hay = reflected longwaveradiation, Wmnm?

H, = back radiation from thewater surface, W nm?
He = evaporative heat loss, Wm?

H. = heat conduction, W mn?

The short wave solar radiation is either measured directly or computed from sun angle
relationships and cloud cover. The long wave atmospheric radiation is computed from air
temperature and cloud cover or air vapor pressure using Brunts formula. The right-hand terms are
all water surface temperature dependent.

Water surface back radiation is computed as:

* 4
Hy = es (T + 273.15) (A-47)
where
E = emissvity of water, 0.97
s’ = Stephan-Boltzman constant, 5.67 x 108 Wm? °K™
Ts = water surface temperature, °C

Like the remaining terms, it is computed for each surface layer cell on each iteration timestep.

Evaporative heat loss is computed as:

He = (W) (& - &) (A-48)
where
f(W) = evaporativewind speed function, WmZ mmHg
e = saturation vapor pressure at the water surface, mmHg
€, = amospheric vapor pressure, mmHg

Evaporative heat loss depends on air temperature and dew point temperature or relative humidity.
Surface vapor pressure is computed from the surface temperature for each surface cell on each
iteration.

Surface heat conduction is computed as:

He = C. f(W) (Ts - Ta) (A-49)
where
C. = Bowen'scoefficient, 0.47 mmHg°C*
T, = airtemperature, °C

Short wave solar radiation penetrates the surface and decays exponentially with depth according to
Bears Law:

— -h
H: (2 = (1 - b) Hs €"* (A-50)
where
Hyz) = short waveradiation at depth z, Wm?
b = fraction absorbed at the water surface
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h
Hs

extinction coefficient, m*
short wave radiation reaching the surface, Wm2

Aside from the problems of measuring meteorological data relative to a large waterbody and
especially the problem of trandating climatological data from distant weather stations, the most
uncertain parameter in the surface heat exchange computations is the evaporative wind speed
function, f(W). Various formulations of f(W) have been catalogued and examined in Edinger, et
al. (1974). Unlike the use of wind speed in wind shear relations as discussed in the previous
section, evaporative wind speed is thought to be a"ventilation speed” rather than a vector velocity.
The different formulations result from the empirical determination of f(W) for different size and
shape waterbodies with data from different locations and averaged over different periods of time.

Evaporation Models
In CE-QUAL-W?2 Version 3, the model user can choose different formulations for evaporation.
TheVersion 3 model includes auser defined evaporation wind speed formula of theform

f(w,)= afw+ bfw W™

where f(W) is in W/m¥mm Hg, afw, bfw, cfw are empirical constants, and W, is the wind speed in
m/s measured at a distance of z=2 m. This function is used in computing both evaporative water |0ss
and evaporative heat |oss. The default value is one suggested by Edinger et a. (1974)

afw=9.2
bfw=0.46
cfw=2.0

for awind speed of 7 m. The Verson 3 modd assumes that the wind speed formulationisat a2 m

height. To convert bfw from any measurement height to a 2 m measuring height assuming that afw
and cfw are the same, bfw a 2 m would be

bfws,, =a ™bfw,

where bfw; is bfw measured at zm and a isthe conversion factor between the wind at z and the wind
a2musing

2
In(—)
2m _ Z0 :1
We 2y @
20

where W, desired wind speed at elevation 2 m
W,: known wind speed at height z
Zy: wind roughness height (assume 0.003 ft for wind < 5 mph and 0.015 for wind > 5 mph,
range 0.0005 to 0.03 ft)

An additional evaporation formulation has been input into the modd: the Ryan-Harleman (1974)
approach that is especially appropriate for heated effluents.

This approach uses the form of
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f(W;)= a+ bW,
where
b = 14 Btu/ft¥/day/mm Hg/mph or 3.2 W/mZmb/m/s or in W2 units 4.26 W/m’/mm Hg/m/s

a= I (Tw'Tav )1/3

| = 22.4 Btu/ft¥day/mm Hg/deg FY® or 2.7 W/m?/mb/deg C¥*or in W2 units of 3.59 W/n?/mm
Hg/deg C**

T,= T*(1-0.378[—z] y*

T,: virtual temperature (absolute units)
p: total atmospheric pressure (in W2 thisis assumed to be 760 mm Hg)

(T +273) T = (T, +273)

]

c/

é
-0.378> &-o. 378[
e

('DfP_\('D\
e ey e

CC\

Note that the for the Lake Hefner Modd: a=0 and b=17 Btu/ft¥day/mm Hg/mph or b=3.75
W/m?mb/m/s or in W2 units, b=4.99 W/m?/mm Hg/m/s.

In the W2 implementation of the Ryan-Harleman equation, if the virtual temperature differenceis
negative or isless than that computed using the Lake Hefner model, f(W) reverts to the Lake Hefner
evaporation modd . Figure 45 shows a comparison of the Ryan-Harleman model compared to the W2
default value.

Adams et d. (1981) recommend that for natural lake surfaces that the Lake Hefner model (see Table
5) be used.
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Summaries of several evaporation formulations are shown below in Table 5 as adapted from Adams,

etal. (1981).

Table 5. Typical Evaporation Formulae for Lakes and Reservoir s (adapted
from Adamset al. 1981)

Name Timeincre- | Water body j & Formulaat sealevel | f(Wo) inunits | Remarks
ments with wind correctedto | of W/m7mm
a2 m height, units Hg, Winm/s
BTU/ft¥day, W in
mph, e, vapor pressure,
inmmHg
Lake 3hrsand Lake Hefner, 17.2Wy(ese) 2.26W, good agreement with
Hefner day OK, 2587 acres lake datafrom
several lakesin US
and Russia
Kohler day Lake Hefner 17.5Wy(ere) 2.2995W, essentialy the same
OK, 2587 acres as Lake Hefner
formula
Zaykov - pondsand small | (1.3+14W,) (er-&) 0.1708+ based on Russian
reservoirs 1.8396W> work
Meyer monthly small lekesand | (80+10W,) (er-&) 10.512+ €, Obtained daily
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Name Timeincre- | Water body j & Formulaat sealevel | f(Ws) inunits | Remarks
ments withwind correctedto | of W/mZmm
a2 m height, units Hg, Winm/s
BTU/ft¥day, W in
mph, e, vapor pressure,
inmmHg
reservoirs 1.314W, from mean morning
and evening
measurements of T,
and RH
Morton monthly Class A pan (73.5+14.7W5) 9.658+ datafrom
(ese) 1.9316W, meteorological
stations,
measurement heights
assumed
Rohwer daily pans, 85 ft dia (67+10W,) (ere) 8.8+ extensive pan
tank, 1300 acre 1.314W, measurements using
reservoir different pans,
correlated with tank
and reservoir data

* 0.1314* BTU/ft/day=W/m? and 7.5006151 mm Hg = 0.01 bar or 10 mb.

Equilibrium Temperature Method

Since certain of the terms in equation (A-46) are surface temperature dependent, and others are
measurable or computable input variables, the most direct route is to define an equilibrium
temperature, T, as the temperature at which the net rate of surface heat exchange is zero.
Equilibrium temperature is the fictitious water surface temperature at which incoming radiation
heat rates are just bal anced by outgoing water surface temperature dependent processes.

Linearization of equation (A-46) along with the definition of equilibrium temperature alows
expressing the net rate of surface heat exchange, H,, as:

Hn = - Kaw (TW Te ) (A-51)
where
Hn = rateof surface heat exchange, W m™
Kaw = coefficient of surface heat exchange, Wm?°C™
Tw = water surface temperature, °C
Te = equilibrium temperature, °C

Seven separate heat exchange processes are summarized in the coefficient of surface heat
exchange and equilibrium temperature. The linearization used in obtaining equation (A-51) has
been examined in detail by Brady, et a. (1968), and Edinger et al. (1974).

The definition of the coefficient of surface heat exchange can be shown to be the first term of a
Taylor series expansion by considering equation (A-51) as:
where the derivative of H, with respect to surface temperature is evaluated from equation (A-46)

daH
i (Ts - Te)
dTs

H, = - (A-52)
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to give Ky, the coefficient of surface heat exchange. All approximations of the individua surface
heat exchange terms enter into the evaluation of the coefficient of surface heat exchange and the
equilibrium temperature. Equations (A-47) and (A-48) are defined from equation (A-46). They
have the same difficulties in evaluation as the individual terms in equation (A-46), but provide a
simpler algebraic method for including surface heat exchange in temperature analyses.

The mass evaporation rate is computed by dividing evaporative heat loss by the latent heat of
evaporation of water. Surface heat exchange always includes evaporative heat loss in the heat
budget, but the user may choose to exclude it in the water budget. For many reservairs, inflow
rates are determined from storage estimates that implicitly include evaporation.

Sediment Heat Exchange. Sediment heat exchange with water is generally small compared to
surface heat exchange and many previous modelers have neglected it. Investigations on severa
reservoirs have shown the process must be included to accurately reproduce hypolimnetic
temperatures primarily because of the reduction in numerical diffusion. The formulation issimilar
to surface heat exchange:

HSN - - KSN (TW - Ts ) (A-53)
where
He = rateof sediment/water heat exchange, W m?
Ksy = coefficient of sediment/water heat exchange, wWm?e°ct
Tn = water temperature, °C
Ts = sediment temperature, °C

Previous applications used a value of 7 x 108 W m2 °C* for K, which is approximately 2 orders
of magnitude smaller than the surface heat exchange coefficient. Average yearly air temperature
isagood estimate of Ts.

Ice Cover

I ce thickness and onset and loss of ice cover play an important role in the heat budget of northern
waterbodies. At high latitudes, ice cover may remain until late spring or early summer and
prevent warming due to absorption of short wave solar radiation.

The ice model is based on an ice cover with ice-to-air heat exchange, conduction through the ice,
conduction between underlying water, and a "melt temperature” layer on the ice bottom (Ashton,
1979). The overall heat balance for the water-to-ice-to-air systemis:

Dh
ri Lf ﬁ - ha' (TI - Te ) - hwi (Tw - Tm ) (A-54)
where
ri = denstyofice, kgm?
Ly = latent heat of fusion of ice, Jkg™
DDt = changein ice thickness (h) with time (), msec?
hy = coefficient of ice-to-air heat exchange, wWm?2e°ct
hyi = coefficient of water-to-ice heat exchange through the melt layer, Wm? C
T, = icetemperature, °C
T = equilibrium temperature of ice-to-air heat exchange, °C
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Tw
Tm

water temperature below ice, °C
melt temperature, 0°C

The ice-to-air coefficient of surface heat exchange, hy, and its equilibrium temperature, Ty, are
computed the same as for surface heat exchange in Edinger, et a. (1974) because heat balance of
the thin, ice surface water layer is the same as the net rate of surface heat exchange presented
previously. The coefficient of water-to-ice exchange, h, depends on turbulence and water
movement under ice and their effect on melt layer thickness. It is afunction of water velocity for
rivers but must be empirically adjusted for reservoirs.

Ice temperature in the ice-heat balance is computed by equating the rate of surface heat transfer
between ice and air to the rate of heat conduction through ice:

hi (Ti- Ta) = ki (Tir_] Tn ) (A-55)

where
ki = molecular heat conductivity of ice, Wt °C?

When solved for ice temperature, T;, and inserted in the overall ice-heat bal ance, the ice thickness
relationship becomes:

rLeBh _ (Tw - T ) ) (A-56)
ki hia

from which ice thickness can be computed for each longitudinal segment. Heat from water to ice
transferred by the last term is removed in the water temperature transport computétions.

Variations in the onset of ice cover and seasonal growth and melt over the waterbody depend on
locations and temperatures of inflows and outflows, evaporative wind variations over the ice
surface, and effects of water movement on the ice-to-water exchange coefficient. 1ce will often
formin reservoir branches before forming in the main pool and remain longer due to these effects.

A second, more detailed algorithm for computing ice growth and decay has been devel oped for the
model. The algorithm consists of a series of one-dimensional, quasi steady-state, thermodynamic
calculations for each timestep. It is similar to those of Maykut and Untersteiner (1971), Wake
(1977) and Patterson and Hamblin (1988). The detailed algorithm provides a more accurate repre-
sentation of the upper part of the ice temperature profile resulting in a more accurate cal culation of
ice surface temperature and rate of ice freezing and melting.

The ice surface temperature, T, is iteratively computed at each timestep using the upper boundary
condition as follows. Assuming linear therma gradients and using finite difference
approximations, heat fluxes through the ice, g, and at the ice-water interface, g, are computed.
Ice thickness at time t, (t), is determined by ice melt at the air-ice interface, Dg,, and ice growth
and melt at the ice-water interface, Dq;,. The computational sequence of ice cover is presented
below.

Initial ice formation. Formation of ice requires lowering the surface water temperature to the
freezing point by normal surface heat exchange processes. With further heat removal, ice begins
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to form on the water surface. This is indicated by a negative water surface temperature. The
negative water surface temperature is then converted to equivalent ice thickness and equivalent
heat is added to the heat source and sink term for water. The computation is done once for each
segment beginning with the ice-free period:

- r h
qo = Twal wCey (A-57)
r i Lf
where

o = thicknessof initial ice formation during atimestep, m
Twn = local temporary negative water temperature, °C

h = layerthickness, m

rw = density of water, kgm?
Cp, = speific heat of water, J kgtec?

ri = densityofice kgm?

Ly = latent heat of fusion, Jkg™

Upper air-ice interface flux boundary condition and ice surface temperature
approximation: The ice surface temperature, Ts, must be known to calculate the heat
components, Hy, He, He, and the thermal gradient in the ice since the components and gradient all
are either explicitly or implicitly a function of Ts. Except during the active thawing season when
ice surface temperature is constant at 0 °C, T must be computed at each timestep using the upper
boundary condition. The approximate value for Ts is obtained by linearizing the ice thickness
across the timestep and solving for Ts.

where

g = K; Tf—TS(t) (A-58)
q (f)

Hsn+ Han' Hbr' He' Hc+ qi = ri Lf dJC;[i, fOf Ts = OOC (A'59)

n

1
70 » & [HL + HL - Hy T2 He T - He T2 o0

K = thermal conductivity of ice, Wm*°C™*
Ts = freezing point temperature, °C
n = timeleve

Absorbed solar radiation by the water under the ice. Although the amount of penetrated solar
radiation is relatively small, it is an important component of the heat budget since it is the only
heat source to the water column when ice is present and may contribute significantly to ice melting
a the ice-water interface. The amount of solar radiation absorbed by water under the ice cover
may be expressed as:
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_ -g: t
Hps = Hs (l'ALBl) (l' b,) eg' a0 (A-61)
where
Hps = solar rediation absorbed by water under ice cover, Wm?
Hs = incident solar radiation, W
ALB; = iceabedo
by = fraction of theincoming solar radiation absorbed in theice surface
g = iceextinction coefficient, m*

Ice melt at the air-ice interface. The solution for Ts holds as long as net surface heat
exchange, Hy(Ts), remains negative corresponding to surface cooling, and surface melting cannot
occur. If H(Ts) becomes positive corresponding to a net gain of heat at the surface, @ must
become negative and an equilibrium solution can only exist if Ts > T;. This situation is not
possible as melting will occur at the surface before equilibrium is reached (Patterson and Hamblin,
1988). Asaresult of quasi-steady approximation, heat, which in reality is used to melt ice at the
surface, is stored internally producing an unrealistic temperature profile. Stored energy is used for
melting at each timestep and since total energy input is the same, net error is small. Stored energy
used for melting iceis expressed as:

Ts(H) _
Gy, a® =71 L Daga (A-62)
where
Coi = specificheat of ice, Jkg™*°C*
Ja = icemeltattheair-iceinterface, mt

Formulation of lower ice-water interface flux boundary condition. Both ice growth
and melt may occur at the ice-water interface. The interface temperature, Ty, is fixed by the water
properties. Flux of heat in the ice at the interface therefore depends on T; and the surface
temperature Tg through the heat flux g. Independently, heat flux from the water to ice, G,
depends only on conditions beneath the ice. An imbalance between these fluxes provides a mech-
anism for freezing or melting. Thus,

dqiw
dt

(A-63)

g- q, =1, L
where

Ow = icegrowth/melt at theice-water interface

The coefficient of water-to-ice exchange, K, depends on turbulence and water movement under
the ice and their effect on melt layer thickness. It is known to be a function of water velocity for
rivers and streams but must be empirically adjusted for reservoirs. The heat flux at the ice-water
interfaceis:

Ow = hw (Tw®-T¢) (A-64)

where

Ty = water temperature in the uppermost layer under theice, °C
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Finally, ice growth or melt at the ice-water interface is:

1 & T-T8 u
Dgfv = —— &Ki —— - ha (Th-Ti )y (A-65)
q ri Lf SK qn-l f H

Density

Accurate hydrodynamic cal culations require accurate water densities. Water densities are affected
by variationsin temperature and solids concentrations given by :

rr=r,+ Drg (A-66)
where
r = densty, kgm?
rr = water density asafunction of temperature, kg m*
Drs = density increment dueto solids, kg m

A variety of formulations have been proposed to describe water density variations due to
temperatures. The following relationship is used in the model (Gill, 1982):

r = 999.8452594 + 6.793952x107 T.

Tw
(A-67)
- 9.095290x10° T2 + 1.001685x10* T3

- 1.120083x10° T4 + 6.536332x10°X TS

Suspended and dissolved solids also affect density. For most applications, dissolved solids will be
in the form of total dissolved solids (TDS). For estuarine applications, salinity should be
specified. The effect of dissolved solids on density is calculated using either of these variables
with the choice specified by the variable [WTYPE] (see page C11). Density effects due to TDS
are given by Ford and Johnson (1983):

Drs = (8.221x10* - 3.87x10° Tw + 4.99X10° Ta) Fros (A-68)

where
Frps = TDSconcentration, g m

and for salinity (Gill, 1982):
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Dr_ = (0.824493 - 4.0899x10° T, + 7.6438x10° T4
- 8.2467x107 T3 + 5.3875x10° Ti) Fa (A-69)
+ (-5.72466x10° + 1.0227x10" Tu
- 1.6546x10° T ) Fa + 4.8314x10* F&
where

Fa = sdinity, kgm?

The suspended solids effects are given by Ford and Johnson (1983):

Dr_ = Fu ?-——xm (A-70)
where
Fs = suspended solidsconcentration, g m?
SG = gpecific gravity of suspended solids

Assuming a specific gravity of 2.65, the above relationship is simplified to:

0.00062 F« (A-71)

Thetotal effect of solidsisthen:

= (BryorDr,) + Drg (A-72)

Selective Withdrawal

Outflows from reservoirs are usually from outlets on the order of a model layer in thickness. The
code provides an option to either specify flows from particular layers at downstream segments or a
selective withdrawal algorithm where outflows and layer locations are calculated based on the
total outflow [QOUT], structure type [SINKC] and elevation [ESTR], and computed upstream

density gradients. The selective withdrawal computation uses these values to compute vertical

withdrawal zone limits and outflows. It also sums the outflows for multiple strucures.

Outflow distribution is calculated in the subroutine SELECTIVE WITHDRAWAL. Thisroutine
first calculates limits of withdrawal based on either a user specified point or line sink approxima
tion for outlet geometry [SINKC]. The empirical expression for point sink withdrawal limitsis:

d = (i Q/N)** (A-73)

and for aline sink:
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— 0.5
d = (i 20/ N) (A-74)
where
d = withdrawal zone half height, m
Q = tota outflow, m’s?
N = internal buoyancy frequency, Hz
q = outflow per unit width, n?s?
G = boundary interference coefficient

The width is the outlet width. The point sink approximation assumes approach flow is radial both
longitudinally and vertically while the line sink approxi mation assumes flow approaches the outl et
radially in the vertical. The boundary interference coefficient is two near a physical boundary and
one elsewhere.

Velocities are determined using a quadratic shape function:

yd \2
r.-r u
Vi =1 - (?(—k ) U (A-75)
€ U
é(ri-ro) o
where
Vi = normalized velocity in layer k
M density in layer k, kg m*

density in the outlet layer, kg m*
density of the withdrawal limit layer, kg m

Mo
r

The shape function generates a maximum velocity at the outlet level with velodties approaching
zero at withdrawal limits. During non-stratified periods, outflow from top to bottom is uniform.
Uniform flows also result from large outflows during periods of mild stratification. As stratifica
tion develops, withdrawal limits decrease and outflow is weighted towards the outlet elevation.

Withdrawal limits can be varied by specifying a line sink and changing the effective width. Small
outlet widths result in nearly uniform outflows, while large widths limit outflows to the outlet

layer.
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