12 Ordinary Differential Equations IV

In this class,

  1. Given the system

    \begin{displaymath}
\dot {\vec x} = A \vec x \qquad
A =
\left(\begin{array}{cc} 0 & 5  -1 & -2 \end{array} \right)
\end{displaymath}

    Find the general solution to this system in vector form and in terms of a fundamental matrix. Complex solutions not allowed.

  2. Solve the system and initial condition

    \begin{displaymath}
\dot {\vec x} = A \vec x \quad \vec x(0) = \vec x_0 \qquad
...
...x_0 = \left( \begin{array}{c} 9  1  1 \end{array} \right)
\end{displaymath}

    Give a fundamental matrix. Clean up the final $\vec x$.

  3. Solve the inhomogeneous system and initial condition

    \begin{displaymath}
\dot {\vec x} = A \vec x + \vec g
\quad \vec x(0) = \vec x...
...0 = \left( \begin{array}{c} 5  11  -2 \end{array} \right)
\end{displaymath}

    Use variation of parameters. Clean up the final $\vec x$.