12 Ordinary Differential Equations IV

In this class,

  1. Solve the system

    \begin{eqnarray*}
x_1' & = & 2 x_1 + x_2 - 2 x_3 \\
x_2' & = & 3 x_1 -2 x_2 \\
x_3' & = & 3 x_1 + x_2 - 3 x_3
\end{eqnarray*}

    Find the general solution to this system in vector form and in terms of a fundamental matrix. Then find the vector of integration constants assuming that $\vec{x}(0)=(1,7,3)^{\rm T}$ and write $\vec{x}(t)$ for that case.

  2. Given the system

    \begin{displaymath}
\dot {\vec x} = A \vec x \qquad
A =
\left(\begin{array}{cc} 0 & 5 \\ -1 & -2 \end{array} \right)
\end{displaymath}

    Find the general solution to this system in vector form and in terms of a fundamental matrix. Complex solutions not allowed.

  3. Solve the inhomogeneous system and initial condition

    \begin{displaymath}
\dot {\vec x} = A \vec x + \vec g
\quad \vec x(0) = \vec x...
...0 = \left( \begin{array}{c} 5 \\ 11 \\ -2 \end{array} \right)
\end{displaymath}

    Use variation of parameters. Clean up the final $\vec x$. No, you cannot apply initial conditions on the homogeneous solution.