Subsections


3.2 Example

From [1, p. 402, 10b]

Asked: The Maclaurin series of $\sin^2 x$.


3.2.1 Identification

General Taylor series:

\begin{displaymath}
\begin{array}{cl}
f(x) &
\displaystyle
= f(a) + f'(a...
...\sum_{n=0}^\infty f^{(n)}(a) \frac{(x-a)^n}{n!}
\end{array}
\end{displaymath}

This is a power series ($a$ is a given constant.) Maclaurin series: $a=0$.

Approach:

$\bullet$
note that $a=0$;
$\bullet$
identify the derivatives;
$\bullet$
evaluate them at $a=0$;
$\bullet$
put in the formula;
$\bullet$
identify the terms for any value of $n$.


3.2.2 Results


\begin{displaymath}
\begin{array}{ll}
f(x) = \sin^2 x & f(0) = 0 \\
f'(x)...
... f''(x) & f^{(6)}(0) = 32 \\
\vdots & \vdots
\end{array}
\end{displaymath}


\begin{displaymath}
\begin{array}{ll}
\sin^2 x & \displaystyle
= f(0) + f'...
...- 8 \frac{x^4}{4!} + 32 \frac{x^6}{6!} + \ldots
\end{array}
\end{displaymath}

General expression:


\begin{displaymath}
\hbox{ When $n=2k$ with $k\ge 1$: } f^{(n)}= 2 (-4)^{ek-1}
\hbox{ Otherwise: } f^{(n)}e = 0
\end{displaymath}


\begin{displaymath}
\sin^2 x = \sum_{k=1}^\infty 2 (-4)^{k-1} \frac{x^{2k}}{(2k)!}
\end{displaymath}


3.2.3 Other way

Write $\sin^2 x = \frac12 - \frac12 \cos(2x)$ and look up the Maclaurin series for the cosine. (No fair.)