4 7.28, §4 Solution


\begin{displaymath}
\hbox{\epsffile{figures/8.ps}}
\end{displaymath}


\begin{displaymath}
u(x,t) = \frac{\bar f(x-at) + \bar f(x+at)}{2}
+ \frac{1}{2a} \int_{x-at}^{x+at} \bar g(\xi) \d\xi
\end{displaymath}

Probably pretty easy to evaluate.


\begin{displaymath}
\hbox{\epsffile{figures/9.ps}}
\end{displaymath}

In the range $0\le x\le\ell$, the found solution is exactly the same as for the finite pipe!

Note that if $f$ and/or $g$ does not satisfy the given boundary conditions, $\bar f$ and $\bar g$ may have kinks or jumps.