4 7.36, §4 Solve

Solve the PDE, again effectively a constant coefficient ODE:

\begin{displaymath}
s^2 \hat u = a^2 \hat u_{yy}
\end{displaymath}


\begin{displaymath}
s^2 = a^2 k^2 \quad\Longrightarrow\quad k = \pm s/a
\end{displaymath}


\begin{displaymath}
\hat u = A e^{sy/a} + B e^{-sy/a}
\end{displaymath}

Apply the BC at $y=\infty$:

\begin{displaymath}
A = 0
\end{displaymath}

Apply the BC at $y=0$:

\begin{displaymath}
\hat u_y - p \hat u = \hat f \quad\Longrightarrow\quad
- \frac sa B - p B = \hat f
\end{displaymath}

Solving for $B$ and plugging it into the expression for $\hat u$ gives:

\begin{displaymath}
\hat u = - \frac{a\hat f}{s+ap} e^{-sy/a}
\end{displaymath}