5 7.36, §5 Back

We need to find the original to

\begin{displaymath}
\hat u = - \frac{a}{s+ap} \hat f e^{-sy/a}
\end{displaymath}

Looking in the tables:

\begin{displaymath}
\frac{1}{s+ap}
\quad \stackrel{\hbox{Table 6.4, \char93  3...
...lbar\joinrel
\Relbar\joinrel\Longrightarrow}
\quad
e^{-apx}
\end{displaymath}

The other factor is a shifted function $f$, restricted to the interval that its argument is positive:

\begin{displaymath}
e^{-sy/a} \hat f
\quad \stackrel{\hbox{Table 6.3, \char93 ...
...rel\Longrightarrow}
\quad
\bar f\left(x - \frac{y}{a}\right)
\end{displaymath}

With the bar, I indicate that I only want the part of the function for which the argument is positive. This could be written instead as

\begin{displaymath}
f\left(x - \frac{y}{a}\right) H \left(x - \frac{y}{a}\right)
\end{displaymath}

where the Heaviside step function $H(x)=0$ if $x$ is negative and 1 if it is positive.

Figure 34: Function $\bar f$.
\begin{figure}\begin{center}
\leavevmode
\epsffile{figures/3.ps}
\end{center}\end{figure}

Use convolution, Table 6.3, # 7. again to get the product.

\begin{displaymath}
u(x,y) = - \int_0^x
a \bar f\left(\xi - \frac{y}{a}\right) e^{-ap(x-\xi)} \d\xi
\end{displaymath}

This must be cleaned up. I do not want bars or step functions in my answer.

I can do that by restricting the range of integration to only those values for which $\bar f$ is nonzero. (Or $H$ is nonzero, if you prefer)

Figure 35: Function $\bar f$.
\begin{figure}\begin{center}
\leavevmode
\epsffile{figures/3.ps}
\end{center}\end{figure}

Two cases now exist:

\begin{displaymath}
u(x,y) = - \int_{y/a}^x
a f\left(\xi - \frac{y}{a}\right) e^{-ap(x-\xi)} \d\xi
\qquad (x > \frac ya)
\end{displaymath}


\begin{displaymath}
u(x,y) = 0 \qquad (x < \frac ya)
\end{displaymath}

It is neater if the integration variable is the argument of $f$. So, define $\phi=\xi - y/a$ and convert:

\begin{displaymath}
u(x,y) = - \int_{0}^{x-y/a}
a f\left(\phi\right) e^{-apx+py+ap\phi} \d\phi
\qquad (x > \frac ya)
\end{displaymath}


\begin{displaymath}
u(x,y) = 0 \qquad (x < \frac ya)
\end{displaymath}

This allows me to see which physical $f$ values I actually integrate over when finding the flow at an arbitrary point:

Figure 5: Supersonic flow over a membrane.
\begin{figure}\begin{center}
\leavevmode
\epsffile{figures/4.ps}
\end{center}\end{figure}