6 7.36, §6 Alternate

An alternate solution procedure is to define a new unknown:

\begin{displaymath}
v \equiv u_y - p u
\end{displaymath}

You must derive the problem for v:

The boundary condition is simply:

\begin{displaymath}
v(x,0) = f(x)
\end{displaymath}

To get the PDE for $v$, use

\begin{displaymath}
\frac{\partial [PDE]}{\partial y} - p [PDE] \quad\Longrightarrow\quad
v_{tt} = a^2 v_{xx}
\end{displaymath}

Similarly, for the initial conditions:

\begin{displaymath}
\frac{\partial [ICs]}{\partial y} - p [ICs] \quad\Longrightarrow\quad
v(0,y) = v_x(0,y) = 0
\end{displaymath}

Figure 6: Problem for v.
\begin{figure}\begin{center}
\leavevmode
\epsffile{figures/5.ps}
\end{center}\end{figure}

After finding $v$, I still need to find $u$ from the definition of $v$:

\begin{displaymath}
v \equiv u_y - p u
\end{displaymath}

Where do you get the integration constant??