Entrance


\begin{displaymath}
\hbox{\epsffile{figures/enter.ps}}
\end{displaymath}

Near the entrance we can learn a lot from Bernoulli:

\begin{displaymath}
p_1 + {\textstyle\frac{1}{2}} \rho V_1^2 + \rho g h_1 = p_2 + {\textstyle\frac{1}{2}} V_2^2 + \rho g h_2
\end{displaymath}

Exercise:

Explain why $p_{\rm kin,B'} \approx p_{\rm kin,B} \approx p_{\rm kin,B''}$ although $V_B \ne 0$ while $V_{B'} = V_{B''} = 0$.
$\bullet$

Exercise:

Which one is larger:
$\bullet$