Developed


\begin{displaymath}
\hbox{\epsffile{figures/develop.ps}}
\end{displaymath}

At and beyond station C the flow is called developed. We will assume that the flow is nonturbulent and that the streamlines have become parallel. These assumptions allow us to solve the incompressible Navier-Stokes equations exactly!

Note that for parallel streamlines, (unidirectional flow), $v=0$.

Continuity:

\begin{displaymath}
\mbox{div}\left(\vec v\right) = 0 =
\frac{\partial u}{\par...
...frac{\partial v}{\partial y}
\quad\Longrightarrow\quad u=u(y)
\end{displaymath}

$y$-momentum:

\begin{displaymath}
\rho \rlap{\kern 3pt\smash{\Bigg/}}\frac{Dv}{Dt} = - \rho g...
...ash{\bigg/}} v
\quad\Longrightarrow\quad p = -\rho g y + P(x)
\end{displaymath}

$x$-momentum:

\begin{displaymath}
\rho \rlap{\kern 3pt\smash{\Bigg/}}\frac{\partial u}{\parti...
...u}{\partial x^2}
+ \frac{\partial^2 u}{\partial y^2}
\right)
\end{displaymath}

hence:

\begin{displaymath}
\frac{\mbox{d}^2 u}{\mbox{d}y^2} = \frac{1}{\mu} \frac{\mbox{d}P}{\mbox{d}x}
= \mbox{ constant }
\end{displaymath}

Exercise:

Why is it constant? If the duct is long, how can you approximate the constant? What is the sign of $\mbox{d}P/\mbox{d}x$?
$\bullet$


\begin{displaymath}
\frac{\mbox{d}u}{\mbox{d}y} = \frac{1}{\mu} \frac{\mbox{d}P}{\mbox{d}x} y + A
\end{displaymath}


\begin{displaymath}
u = \frac{1}{2\mu} \frac{\mbox{d}P}{\mbox{d}x} y^2 + A y + B
\end{displaymath}


\begin{displaymath}
\hbox{\epsffile{figures/develop.ps}}
\end{displaymath}

The boundary conditions $u(0)=u(h)=0$ give the constants:

\begin{displaymath}
\fbox{$\displaystyle
\frac{\mbox{d}P}{\mbox{d}x} = \mbox{c...
...\rho g y + \frac{\mbox{d}P}{\mbox{d}x} x + \mbox{constant}
$}
\end{displaymath}

Maximum velocity:

\begin{displaymath}
v_{\mbox{max}} = - \frac{h^2}{8\mu} \frac{\mbox{d}P}{\mbox{d}x} \qquad
u = \frac{4(h-y) y}{h^2} v_{\mbox{max}}
\end{displaymath}

Mass flux (per unit span):

\begin{displaymath}
\dot m = \int \rho \vec v \cdot \vec n \d S =
\int_0^h \rho u \d y = {\textstyle\frac{2}{3}} \rho v_{\mbox{max}} h
\end{displaymath}

The volumetric flow rate $Q = \dot m/\rho$

Average velocity:

\begin{displaymath}
\fbox{$\displaystyle
\dot m \equiv \rho Q \equiv \rho v_{\...
...ad
v_{\mbox{ave}} = {\textstyle\frac{2}{3}} v_{\mbox{max}} $}
\end{displaymath}

Note that $Q=v_{\mbox{ave}} h$ and $\dot m=\rho v_{\mbox{ave}} h$.

\begin{displaymath}
\fbox{$\displaystyle
\frac{\mbox{d}P}{\mbox{d}x} = - \frac{12\mu}{h^2} v_{\mbox{ave}} $}
\end{displaymath}

Vorticity:

\begin{displaymath}
\vec\omega = \hat k
\left(
\rlap{\kern 3pt\smash{\Bigg/}}...
...ht)
= \hat k\frac{1}{2\mu} \frac{\mbox{d}P}{\mbox{d}x} (h-2y)
\end{displaymath}

Shear:

\begin{displaymath}
\tau \equiv \tau_{xy} = \mu
\left(
\rlap{\kern 3pt\smash{...
...}
\right)
= - \frac{1}{2} \frac{\mbox{d}P}{\mbox{d}x} (h-2y)
\end{displaymath}


\begin{displaymath}
\hbox{\epsffile{figures/shear.ps}}
\end{displaymath}

Exercise:

Verify the integral momentum equation for any duct length $L$.
$\bullet$

Note that this flow becomes turbulent at a Reynolds number of say 1,500 (in the range from 1,000 to 8,000). The above expressions do not apply to turbulent flow.