Quantum Mechanics Solution Manual |
|
© Leon van Dommelen |
|
4.3.2.2 Solution hydb-b
Question:
Use the generic expression
with

and
from the spherical harmonics table to find the ground state wave function
. Note: the Laguerre polynomial
and for any
,
is just its
-th derivative.
Answer:
You get, substituting
1,
0,
0:
where 0! = 1! = 1,
is the first derivative of
with respect to
, which is
1, and
1
according to the table. So you get
as in the previous question.