Subsections


7.2 Example

From [1, p. 487, 14e]

Given: $\vec F = x {\hat\imath}+ 2y {\hat\jmath}+ 3x {\hat k}$


\begin{displaymath}
\hbox{\epsffile{linint.eps}}
\end{displaymath}

Asked: The work done by this force going from O to C along (1) the connecting line; (2) the curve $x=t$, $y=t^2$, $z=t^3$; (3) path OABC.


7.2.1 Identification

Find the curl of the vector to see whether the three integrals are going to be the same:

\begin{displaymath}
\nabla \times \vec F = \left\vert
\begin{array}{ccc}
{...
...
= \left( \begin{array}{c} 0  -3  0 \end{array} \right)
\end{displaymath}

Nonzero, so the integrals along the three paths need not be the same.


7.2.2 Solution


\begin{displaymath}
\int_O^C \vec F {\rm d}\vec r = \int_O^C x {\rm d}x + 2 y {\rm d}y + 3 x {\rm d}z
\end{displaymath}


\begin{displaymath}
\epsffile{linint.eps}
\end{displaymath}

  1. Along the line $y=x$ and $z=x$:

    \begin{displaymath}
\int_{x=0}^1 6x {\rm d}x = 3
\end{displaymath}

  2. Along the curve $x=t$, $y=t^2$, $z=t^3$:

    \begin{displaymath}
\int_{t=0}^1 F_x \frac{{\rm d}x}{{\rm d}t} + F_y \frac{{\r...
...}t + 2t^2  2t {\rm d}t + 3 t  3t^2 {\rm d}t
= \frac{15}4
\end{displaymath}

  3. Along OABC:

    \begin{displaymath}
\int_{x=0}^1 x {\rm d}x + \int_{y=0}^1 2 y {\rm d}y + \int_{z=0}^1 3   1 {\rm d}z
= \frac 92
\end{displaymath}