Subsections


6.2 Example

From [1, p. 338, 14]

Given: A particle moves along a curve described by

\begin{displaymath}
x = {\textstyle\frac{1}{2}} t^2 \qquad y = {\textstyle\frac{1}{2}} x^2 - {\textstyle\frac{1}{4}} \ln x
\end{displaymath} (6.1)

Asked: The velocity and acceleration at $t=1$


\begin{displaymath}
\epsffile{motion1.eps}
\end{displaymath}


6.2.1 Position

At $t=1$:

\begin{displaymath}
x = {\textstyle\frac{1}{2}} t^2 = {\textstyle\frac{1}{2}} ...
...style\frac{1}{2}} x^2 - {\textstyle\frac{1}{4}} \ln x = 0.298
\end{displaymath} (6.2)

hence
\begin{displaymath}
\vec r = \left(\begin{array}{c} 0.5  0.298 \end{array}\right)
= 0.5 {\hat\imath}+ 0.298 {\hat\jmath}
\end{displaymath} (6.3)


6.2.2 Velocity

Velocity:

\begin{displaymath}
\vec v =
\left(
\begin{array}{c}
\displaystyle \frac...
...}
t  \frac12 t^3 - \frac12 t^{-1}
\end{array}
\right)
\end{displaymath} (6.4)

Velocity at $t=1$:

\begin{displaymath}
\vec v(1) =
\left(
\begin{array}{c}
1  0
\end{array}
\right) = 1 {\hat\imath}+ 0 {\hat\jmath}= {\hat\imath}
\end{displaymath} (6.5)

Components at $t=1$:

\begin{displaymath}
v_x \equiv \frac{{\rm d}x}{{\rm d}t} = 1 \qquad v_y \equiv \frac{{\rm d}y}{{\rm d}t} = 0
\end{displaymath} (6.6)


\begin{displaymath}
\epsffile{motion2.eps}
\end{displaymath}

Magnitude at $t=1$:

\begin{displaymath}
\vert\vec v\vert = v \equiv \frac{{\rm d}s}{{\rm d}t} = \sqrt{v_x^2 + v_y^2} = 1
\end{displaymath} (6.7)

Angle with the positive $x$-axis at $t=1$:

\begin{displaymath}
\tau = \arctan \frac{v_y}{v_x} = 0 \mbox{ (not $\pi$)}.
\end{displaymath} (6.8)


6.2.3 Acceleration

Acceleration:

\begin{displaymath}
\vec a =
\left(
\begin{array}{c}
\displaystyle \frac...
...}
1  \frac32 t^2 + \frac12 t^{-2}
\end{array}
\right)
\end{displaymath} (6.9)

from (6.4).

Acceleration at $t=1$:

\begin{displaymath}
\vec a(1) =
\left(
\begin{array}{c}
1  2
\end{array}
\right) = 1 {\hat\imath}+ 2 {\hat\jmath}
\end{displaymath} (6.10)

Components at $t=1$:

\begin{displaymath}
a_x \equiv \frac{{\rm d}v_x}{{\rm d}t} = 1 \qquad
a_y \equiv \frac{{\rm d}v_y}{{\rm d}t} = 2
\end{displaymath} (6.11)


\begin{displaymath}
\epsffile{motion3.eps}
\end{displaymath}

Magnitude at $t=1$:

\begin{displaymath}
\vert\vec a\vert = a = \sqrt{a_x^2 + a_y^2} = \sqrt{5}
\end{displaymath} (6.12)

Angle with the positive $x$-axis at $t=1$:

\begin{displaymath}
\phi = \arctan \frac{a_y}{a_x} = 63^\circ \mbox{ (not $243^\circ$)}.
\end{displaymath} (6.13)

Component tangential to the motion:

\begin{displaymath}
a_t \equiv \frac{{\rm d}v}{{\rm d}t} \equiv \frac{{\rm d}^...
...ec v\vert} =
\frac{a_x v_x + a_y v_y}{\vert\vec v\vert} = 1
\end{displaymath} (6.14)

Component normal to the motion:

\begin{displaymath}
a_n \equiv \frac{v^2}{R} = \sqrt{a^2 - a_t^2} = 2
\end{displaymath} (6.15)