9.1 Introduction


\begin{displaymath}
\epsffile{numinti1.eps}
\end{displaymath}

Numerical integration using Newton formulae:

Trapezium rule for an interval from $x=x_i$ to $x_{i+1}$:

\begin{displaymath}
\int_{x_i}^{x_{i+1}} f(x)\; {\rm d}x \approx
\left(x_{i+...
..._i\right)
\frac{f\left(x_i\right) + f\left(x_{i+1}\right)}2
\end{displaymath}


\begin{displaymath}
\epsffile{numinti2.eps}
\end{displaymath}

Simpson rule for an interval from $x=x_i$ to $x_{i+1}$:

\begin{displaymath}
\int_{x_i}^{x_{i+1}} f(x)\; {\rm d}x \approx
\left(x_{i+...
...ght) + 4 f\big(x_{i+\frac12}\big)
+ f\left(x_{i+1}\right)}6
\end{displaymath}


\begin{displaymath}
\epsffile{numinti3.eps}
\end{displaymath}

These rules are accurate if the interval from $x_i$ to $x_{i+1}$ is sufficiently small. To integrate over an interval that is not small, divide it into small ones, then integrate over each small interval and add the results.