5.1 Introduction

Combined changes in variables are common. For example:

The key concept is the total differential. For any function $f$ $\vphantom0\raisebox{1.5pt}{$=$}$ $f(x,y,z)$,

\begin{displaymath}
{\rm d}f =
\frac{\partial f}{\partial x} {\rm d}x +
\f...
...artial y} {\rm d}y +
\frac{\partial f}{\partial z} {\rm d}z
\end{displaymath}

Of course, $f$ could be a vector.