Subsections


1.3 Example

From [1, p. 128, 13g]

Asked: Graph


\begin{displaymath}
y = x \sqrt{x-1}
\end{displaymath}


1.3.1 Solution


\begin{displaymath}
y = x \sqrt{x-1}
\end{displaymath}

Factor $\sqrt{x-1}$ is $\sqrt{x}$ shifted one unit towards the right.

\begin{displaymath}
\epsffile{graphsx21.eps}
\end{displaymath}

Multiplying by $x$ magnifies it by a factor ranging from 1 to $\infty$:

\begin{displaymath}
\epsffile{graphsx22.eps}
\end{displaymath}

Function $y(x)$:

$\bullet$
has an $x$-extent $x\ge 1$ and a $y$-extent $y\ge 0$;
$\bullet$
behaves asymptotically as $y \sim x^{3/2}$ for $x\to \infty$;
$\bullet$
is monotonous:

\begin{displaymath}
y' = \frac{{\rm d}y}{{\rm d}x} = \sqrt{x-1}+\frac{x}{2\sqr...
...rac{2x-2 + x}{2\sqrt{x-1}}
= \frac{3x-2}{2\sqrt{x-1}} > 0;
\end{displaymath}

$\bullet$
has vertical slope at $x=1$;
$\bullet$
is concave down for smaller $x$, concave up for larger $x$;
$\bullet$
the inflection point is at

\begin{displaymath}
y'' = \frac{3x-4}{4(x-1)^{3/2}}=0
\end{displaymath}

giving $x=4/3$.