Subsections


1.2 Example

From [1, p. 128, 13a]

Asked: Draw the graph of


\begin{displaymath}
xy=\left(x^2-9\right)^2
\end{displaymath}


1.2.1 Using reasoning


\begin{displaymath}
xy=\left(x^2-9\right)^2
\end{displaymath}

Instead of starting to crunch numbers, look at the pieces first:

Factor $x^2-9=(x-3)(x+3)$ is a parabola with zeros at $x=\pm 3$:

\begin{displaymath}
\begin{array}{c}
\epsffile{graphsx11.eps}
\end{array}
\end{displaymath}

Squaring gives a quartic with double zeros at $x=\pm 3$:

\begin{displaymath}
\epsffile{graphsx12.eps}
\end{displaymath}

Dividing by $x$ will produce a simple pole at $x=0$ and also a sign change at negative $x$:

\begin{displaymath}
\epsffile{graphsx13.eps}
\end{displaymath}

Function $y(x)$:

$\bullet$
has an $x$-extent $x\ne 0$ and a $y$-extend $-\infty < y < \infty$;
$\bullet$
is odd (symmetric with respect to the origin);
$\bullet$
has a relative maximum at -3 of finite curvature: $y\propto (x+3)^2$;
$\bullet$
has a relative minimum at 3 of finite curvature: $y\propto (x-3)^2$;
$\bullet$
has a vertical asymptote at $x=0$ with asymptotic behavior: $y \sim 81/x$ for $\vert x\vert\to 0$;
$\bullet$
behaves asymptotically as $y \sim x^3$ for $x\to\pm\infty$;
$\bullet$
is concave up for $x>0$, down for $x<0$. (Should really prove this, I guess.)


1.2.2 Using brute force


\begin{displaymath}
y=\frac{\left(x^2-9\right)^2}{x}
\end{displaymath}

Hence

$\bullet$
intercepts with $x$-axis are at $x=\pm3$;
$\bullet$
no intercepts with the $y$ axis;
$\bullet$
$y$ is an odd function of $x$ (symmetric about the origin);
$\bullet$
for $x\downarrow 0$, $y \to \infty$ (vertical asymptote);
$\bullet$
for $x\uparrow 0$, $y \to -\infty$ (singularity is an odd, simple pole);
$\bullet$
for $x\to \pm \infty$, $y \sim x^3 \to \pm \infty$.


\begin{displaymath}
y' \equiv\frac{{\rm d}y}{{\rm d}x}=\frac{\left(x^2-9\right)\left(3x^2+9\right)}{x^2}
\end{displaymath}

Hence,

$\bullet$
$y'>0$ for $-\infty< x<-3$ ($y$ increases from $-\infty$);
$\bullet$
$y'=0$ for $x=-3$ (local maximum, $y=0$);
$\bullet$
$y'<0$ for $-3<x<0$ ($y$ decreases towards $-\infty$);
$\bullet$
$y'=-\infty$ for $x=0$ (singular point, vertical asymptote);
$\bullet$
$y'<0$ for $0<x<-3$ (decreases from $\infty$);
$\bullet$
$y'=0$ for $x=3$ (local minimum, $y=0$);
$\bullet$
$y'>0$ for $3<x<\infty$ (increases to $\infty$).

Also,

$\bullet$
$y'\to \infty$ when $x\to \pm \infty$ (no horizontal or oblique asymptotes);
$\bullet$
all derivatives exist, except at $x=0$, which has no point on the curve (no corners, cusps, infinite curvature, or other singular points);
$\bullet$
probably no inflection points.


\begin{displaymath}
y'' = \frac{6x^4+162}{x^3}
\end{displaymath}

Hence
$\bullet$
really no inflection points (since there is no point at $x=0$);
$\bullet$
cocave downward for $x<0$, upward for $x>0$.


\begin{displaymath}
\epsffile{graphsx13.eps}
\end{displaymath}

Hence the $x$- and $y$-extends are as before.