Finish


\begin{displaymath}
\hbox{\epsffile{figures/total.ps}}
\end{displaymath}


\begin{displaymath}
0 = p_1 - p_A + p_A - p_D + p_D - p_2
\end{displaymath}

Individual pressure differences:

\begin{displaymath}
\frac{p_1}{\rho} + gh_1 = \frac{p_A}{\rho} + {\textstyle\frac{1}{2}} v^2
\end{displaymath}


\begin{displaymath}
\frac{p_A}{\rho} + {\textstyle\frac{1}{2}} v^2 = \frac{p_D}...
...style\frac{1}{2}} v^2 + f \frac Lh {\textstyle\frac{1}{2}} v^2
\end{displaymath}


\begin{displaymath}
\frac{p_D}{\rho} + \alpha {\textstyle\frac{1}{2}} v^2 = \frac{p_2}{\rho} +g h_2
+ K_D {\textstyle\frac{1}{2}} v^2 + g h_2
\end{displaymath}

Total:

\begin{displaymath}
g h_1 - g h_2 =
K_e {\textstyle\frac{1}{2}} v^2 + f \frac{...
... {\textstyle\frac{1}{2}} v^2 + K_D {\textstyle\frac{1}{2}} v^2
\end{displaymath}

where $v$ is the average velocity in the duct.