Subsections


1.2 Example

From [1, p. 128, 13a]

Asked: Draw the graph of


\begin{displaymath}
xy=\left(x^2-9\right)^2
\end{displaymath}


1.2.1 Using reasoning


\begin{displaymath}
xy=\left(x^2-9\right)^2
\end{displaymath}

Instead of starting to crunch numbers, look at the pieces first:

Factor $x^2-9$ $\vphantom0\raisebox{1.5pt}{$=$}$ $(x-3)(x+3)$ is a parabola with zeros at $x$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\pm 3$:

\begin{displaymath}
\begin{array}{c}
\epsffile{graphsx11.eps}
\end{array}
\end{displaymath}

Squaring gives a quartic with double zeros at $x$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\pm 3$:

\begin{displaymath}
\epsffile{graphsx12.eps}
\end{displaymath}

Dividing by $x$ will produce a simple pole at $x$ $\vphantom0\raisebox{1.5pt}{$=$}$ 0 and also a sign change at negative $x$:

\begin{displaymath}
\epsffile{graphsx13.eps}
\end{displaymath}

Function $y(x)$:


1.2.2 Using brute force


\begin{displaymath}
y=\frac{\left(x^2-9\right)^2}{x}
\end{displaymath}

Hence


\begin{displaymath}
y' \equiv\frac{{\rm d}y}{{\rm d}x}=\frac{\left(x^2-9\right)\left(3x^2+9\right)}{x^2}
\end{displaymath}

Hence,

Also,


\begin{displaymath}
y'' = \frac{6x^4+162}{x^3}
\end{displaymath}

Hence


\begin{displaymath}
\epsffile{graphsx13.eps}
\end{displaymath}

Hence the $x$- and $y$-extends are as before.