Subsections


2.2 Example

From [1, p. 116, 30]


\begin{displaymath}
\epsffile{optx11.eps}
\end{displaymath}

Given: A free standing wall, located $3 \frac38$ ft from the side of a house.

Asked: What is the length $\ell$ of the shortest ladder that can reach the house (over the free standing wall).


2.2.1 Definition


\begin{displaymath}
\epsffile{optx14.eps}
\end{displaymath}

Two degrees of freedom: say $h$ and $d$

One inequality constraint: the ladder must be above the free standing wall.


2.2.2 Reduction

The shortest ladder hits the free standing wall:


\begin{displaymath}
\epsffile{optx12.eps}
\end{displaymath}

One degree of freedom left: $\varphi$.


2.2.3 Further reduction


\begin{displaymath}
\epsffile{optx13.eps}
\end{displaymath}

At the minimum:

\begin{displaymath}
\frac{{\rm d}\ell}{{\rm d}\varphi} = 0
\end{displaymath}


2.2.4 Finding the length


\begin{displaymath}
\epsffile{optx12.eps}
\end{displaymath}

First find $a$:

\begin{displaymath}
a = \frac{8}{\tan\varphi}.
\end{displaymath}

Then:

\begin{displaymath}
\ell = \frac{{\textstyle 3\frac38}+a}{\cos\varphi} =
\frac{\textstyle 3\frac38}{\cos\varphi} + \frac{8}{\sin\varphi}
\end{displaymath} (2.1)


2.2.5 Finding the optimum angle


\begin{displaymath}
\frac{{\rm d}\ell}{{\rm d}\varphi} =
\frac{\textstyle 3\...
...phi} \sin\varphi
- \frac{8}{\sin^2\varphi} \cos\varphi = 0.
\end{displaymath}


\begin{displaymath}
\frac{27}{8\cos^2\varphi} \sin\varphi =
\frac{8}{\sin^2\varphi} \cos\varphi
\end{displaymath}


\begin{displaymath}
\tan^3 \varphi = \frac{64}{27}
\quad\quad\Rightarrow\quad\quad \varphi_{\mbox{min}} = 0.9273 \mbox{ radians }
\end{displaymath}


2.2.6 Finding the optimum length

From (2.1)

\begin{displaymath}
\ell_{\mbox{min}} = 15.625 \mbox{ ft }
\end{displaymath}