Subsections


10.2 Example

From [1, p. 439, 35(b)].

Asked: The line through point $P_0$, (2,-3,5), and parallel to the line $x-y+2z+4=0$, $2x+3y+6z-12=0$.


\begin{displaymath}
\epsffile{vecgeom1.eps}
\end{displaymath}


10.2.1 Identification


\begin{displaymath}
\epsffile{vecgeom1.eps}
\end{displaymath}


10.2.2 Solution


\begin{displaymath}
x-y+2z+4=0 \quad\quad\Rightarrow\quad\quad \vec n_1 = (1,-1,2)
\end{displaymath}


\begin{displaymath}
2x+3y+6z-12=0 \quad\quad\Rightarrow\quad\quad \vec n_2 = (2,3,6)
\end{displaymath}


\begin{displaymath}
\vec s = \left\vert
\begin{array}{ccc}
{\hat\imath}& {...
... = \left( \begin{array}{c} -12  -2  5 \end{array} \right)
\end{displaymath}


\begin{displaymath}
\vec r = \left(\begin{array}{c} x  y  z \end{array} \r...
...mu \left( \begin{array}{c} -12  -2  5 \end{array} \right)
\end{displaymath}

Alternatively:


\begin{displaymath}
\frac{x-2}{-12} = \frac{y+3}{-2} = \frac{z-5}{5} (= \mu)
\end{displaymath}