Subsections


10.3 Example

From [1, p. 440, 36(b)].

Asked: The plane through point $P_0$, (2,-3,2), and the line $6x+4y+3z+5=0$, $2x+y+z-2=0$.


\begin{displaymath}
\epsffile{vecgeom2.eps}
\end{displaymath}


10.3.1 Identification


\begin{displaymath}
\epsffile{vecgeom2.eps}
\end{displaymath}


10.3.2 Solution


\begin{displaymath}
6x+4y+3z+5=0 \quad\quad\Rightarrow\quad\quad \vec n_1 = (6,4,3)
\end{displaymath}


\begin{displaymath}
2x+y+z-2=0 \quad\quad\Rightarrow\quad\quad \vec n_2 = (2,1,1)
\end{displaymath}


\begin{displaymath}
\vec s = \left\vert
\begin{array}{ccc}
{\hat\imath}& {...
...
= \left( \begin{array}{c} 1  0  -2 \end{array} \right)
\end{displaymath}

When $x=0$ on the line,

\begin{displaymath}
4y+3z+5=0, \quad y+z-2=0 \quad\quad\Rightarrow\quad\quad x=0, \quad y=-11,\quad z = 13
\end{displaymath}


\begin{displaymath}
\vec n = \left(\begin{array}{c} 1  0  -2 \end{array} \...
...ft( \begin{array}{c} 2  -3  2 \end{array} \right) \right]
\end{displaymath}


\begin{displaymath}
= \left(\begin{array}{c} 1  0  -2 \end{array} \right) ...
...= \left( \begin{array}{c} -16  -7  -8 \end{array} \right)
\end{displaymath}


\begin{displaymath}
\left(\begin{array}{c} 16  7  8 \end{array} \right) \c...
...ot
\left( \begin{array}{c} 2  -3  2 \end{array} \right)
\end{displaymath}


\begin{displaymath}
16 x + 7 y + 8 z = 27
\end{displaymath}