Subsections


8.2 Example

From [1, p. 487, 14e]

Asked: Find the centroid of the first-quadrant area bounded by $x^2-8y+4$ $\vphantom0\raisebox{1.5pt}{$=$}$ 0 and $x^2$ $\vphantom0\raisebox{1.5pt}{$=$}$ $4y$ and $x$ $\vphantom0\raisebox{1.5pt}{$=$}$ 0.


8.2.1 Region


\begin{displaymath}
\hbox{\epsffile{mulintx11.eps}}
\end{displaymath}


8.2.2 Approach

Integrate $x$ first?


\begin{displaymath}
\hbox{\epsffile{mulintx12.eps}}
\end{displaymath}

The integral would have to be split up into the light and dark areas since the lower boundary of integration is $x_1$ $\vphantom0\raisebox{1.5pt}{$=$}$ 0 in the light region and $x_1$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\sqrt{8y-4}$ in the dark region.

So integrate $y$ first!


\begin{displaymath}
\hbox{\epsffile{mulintx13.eps}}
\end{displaymath}

The boundaries of integration will be

\begin{displaymath}
y_1 = {\textstyle\frac{1}{4}} x^2 \qquad
y_2 = {\textstyle\frac{1}{8}} x^2 + {\textstyle\frac{1}{2}}
\end{displaymath}

After integration over $y$, the remaining region of integration over $x$ will be a line segment:


\begin{displaymath}
\hbox{\epsffile{mulintx14.eps}}
\end{displaymath}


\begin{displaymath}
x_1 = 0 \qquad x_2 = 2
\end{displaymath}


8.2.3 Results


\begin{displaymath}
\hbox{\epsffile{mulintx13.eps}}
\end{displaymath}

For $A$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\int{\rm d}A$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\int\int{\rm d}x{\rm d}y$:


\begin{displaymath}
A = \int_{x=0}^{x=2}
\left[\int_{y=\frac14 x^2}^{y=\frac18x^2+\frac12}\; {\rm d}y\right]\; {\rm d}x
\end{displaymath}


\begin{displaymath}
= \int_{x=0}^{2}
\left[ y \Big\vert _{y=\frac14 x^2}^{y=\frac18x^2+\frac12}\right]\; {\rm d}x
\end{displaymath}


\begin{displaymath}
= \int_{x=0}^{2} \left[ ({\textstyle\frac{1}{8}}x^2+{\text...
...\frac{1}{2}}) - ({\textstyle\frac{1}{4}} x^2)\right] {\rm d}x
\end{displaymath}


\begin{displaymath}
= \int_{x=0}^{2} \left[ ({\textstyle\frac{1}{2}} - {\textstyle\frac{1}{8}} x^2\right] {\rm d}x
= {\textstyle\frac{2}{3}}
\end{displaymath}


\begin{displaymath}
\hbox{\epsffile{mulintx13.eps}}
\end{displaymath}

For $A\bar x$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\int x{\rm d}A$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\int\int x{\rm d}x{\rm d}y$:


\begin{displaymath}
A = \int_{x=0}^{x=2}
\left[\int_{y=\frac14 x^2}^{y=\frac18x^2+\frac12} x\; {\rm d}y\right]\; {\rm d}x
\end{displaymath}

where $x$ is constant in the integration;


\begin{displaymath}
= \int_{x=0}^{2}
\left[ x y \Big\vert _{y=\frac14 x^2}^{y=\frac18x^2+\frac12}\right]\; {\rm d}x
\end{displaymath}


\begin{displaymath}
= \int_{x=0}^{2} \left[ ({\textstyle\frac{1}{8}}x^3+{\text...
...frac{1}{2}}x) - ({\textstyle\frac{1}{4}} x^3)\right] {\rm d}x
\end{displaymath}


\begin{displaymath}
= \int_{x=0}^{2} \left[ ({\textstyle\frac{1}{2}}x - {\text...
...e\frac{1}{8}} x^3\right] {\rm d}x
= {\textstyle\frac{1}{2}}
\end{displaymath}

Hence $\bar x$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\frac12/\frac23$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\frac34$.

For $A\bar y$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\int y {\rm d}A$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\int\int y {\rm d}x {\rm d}y$:


\begin{displaymath}
A = \int_{x=0}^{x=2}
\left[\int_{y=\frac14 x^2}^{y=\frac18x^2+\frac12} y\; {\rm d}y\right]\; {\rm d}x
\end{displaymath}


\begin{displaymath}
= \int_{x=0}^{2}
\left[ {\textstyle\frac{1}{2}} y^2
\B...
...ert _{y=\frac14 x^2}^{y=\frac18x^2+\frac12}\right]\; {\rm d}x
\end{displaymath}


\begin{displaymath}
= \int_{x=0}^{2} \left[
{\textstyle\frac{1}{2}}({\textst...
...le\frac{1}{2}}({\textstyle\frac{1}{4}} x^2)^2\right] {\rm d}x
\end{displaymath}


\begin{displaymath}
= \int_{x=0}^{2} \left[ ({\textstyle\frac{1}{8}} + {\texts...
...rac{3}{128}} x^2\right] {\rm d}x
= {\textstyle\frac{4}{15}}
\end{displaymath}

Hence $\bar y$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\frac4{15}/\frac23$ $\vphantom0\raisebox{1.5pt}{$=$}$ $\frac25$.